Skip to main content

Two-Stage Knowledge Graph Completion Based on Semantic Features and High-Order Structural Features

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14645))

Included in the following conference series:

  • 143 Accesses

Abstract

Recently, multi-head Graph Attention Networks (GATs) have incorporated attention mechanisms to generate more enriched feature embeddings, demonstrating significant potential in Knowledge Graph Completion (KGC) tasks. However, existing GATs based KGC approaches struggle to update entities with few neighbors, making it challenging to obtain structured semantic information and overlooking complex and implicit information in distant triples. To this effect, we propose a novel model named the Two-Stage KGC model with integrated High-Order Structural Features (HOSAT), designed to enhance the learning process of GATs. Initially, we leverage the conventional GATs module to acquire embeddings encapsulating local semantic intricacies. Subsequently, we introduce a global biased random walk algorithm, strategically amalgamating graph topology, entity attributes, and relationship attributes. This algorithm aims to extract high-order structured semantic neighbor sequences from multiple perspectives and construct nuanced reasoning paths. By propagating the embedding along this path, it is ensured that with an increasing number of iterations, the aggregated information of each node becomes an almost perfect combination of local and global features. Evaluation on two public benchmark datasets using entity prediction methods demonstrates that HOSAT achieves substantial performance improvements over state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  2. Balazevic, I., Allen, C., Hospedales, T.M.: TuckER: tensor factorization for knowledge graph completion, pp. 5184–5193. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1522

  3. Bollacker, K.D., Evans, C., Paritosh, P.K., Sturge, T., Taylor, J.: FreeBase: a collaboratively created graph database for structuring human knowledge, pp. 1247–1250. ACM (2008). https://doi.org/10.1145/1376616.1376746

  4. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data, pp. 2787–2795 (2013)

    Google Scholar 

  5. Carlson, A., Betteridge, J., Kisiel, B., Settles, B.Jr., Hruschka, E., Mitchell, T.M.: Toward an architecture for never-ending language learning. AAAI Press (2010)

    Google Scholar 

  6. Chen, X., Hu, Z., Sun, Y.: Fuzzy logic based logical query answering on knowledge graphs, pp. 3939–3948. AAAI Press (2022)

    Google Scholar 

  7. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings, pp. 1811–1818. AAAI Press (2018)

    Google Scholar 

  8. Fan, T., Wang, H.: Research of Chinese intangible cultural heritage knowledge graph construction and attribute value extraction with graph attention network. Inf. Process. Manag. 59(1), 102753 (2022). https://doi.org/10.1016/j.ipm.2021.102753

    Article  Google Scholar 

  9. Geng, S., Fu, Z., Tan, J., Ge, Y., de Melo, G., Zhang, Y.: Path language modeling over knowledge graphs for explainable recommendation, pp. 946–955. ACM (2022). https://doi.org/10.1145/3485447.3511937

  10. Huang, X., Zhang, J., Li, D., Li, P.: Knowledge graph embedding based question answering, pp. 105–113. ACM (2019). https://doi.org/10.1145/3289600.3290956

  11. Li, Z., Liu, H., Zhang, Z., Liu, T., Xiong, N.N.: Learning knowledge graph embedding with heterogeneous relation attention networks. IEEE Trans. Neural Networks Learn. Syst. 33(8), 3961–3973 (2022). https://doi.org/10.1109/TNNLS.2021.3055147

    Article  MathSciNet  Google Scholar 

  12. Li, Z.X., Li, Y.J., Liu, Y.W., Liu, C., Zhou, N.X.: K-CTIAA: automatic analysis of cyber threat intelligence based on a knowledge graph. Symmetry 15(2), 337 (2023)

    Article  Google Scholar 

  13. Liu, X., Tan, H., Chen, Q., Lin, G.: RAGAT: relation aware graph attention network for knowledge graph completion. IEEE Access 9, 20840–20849 (2021). https://doi.org/10.1109/ACCESS.2021.3055529

  14. Nathani, D., Chauhan, J., Sharma, C., Kaul, M.: Learning attention-based embeddings for relation prediction in knowledge graphs, pp. 4710–4723. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/p19-1466

  15. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.Q.: A novel embedding model for knowledge base completion based on convolutional neural network, pp. 327–333. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/n18-2053

  16. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  17. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge, pp. 697–706. ACM (2007). https://doi.org/10.1145/1242572.1242667

  18. Sun, Z., Deng, Z., Nie, J., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. OpenReview.net (2019)

    Google Scholar 

  19. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference, pp. 57–66. Association for Computational Linguistics (2015). https://doi.org/10.18653/v1/W15-4007

  20. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: JMLR Workshop and Conference Proceedings, vol. 48, pp. 2071–2080. JMLR.org (2016)

    Google Scholar 

  21. Vashishth, S., Sanyal, S., Nitin, V., Agrawal, N., Talukdar, P.P.: InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions, pp. 3009–3016. AAAI Press (2020)

    Google Scholar 

  22. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational graph convolutional networks. OpenReview.net (2020)

    Google Scholar 

  23. Wang, H., Ren, H., Leskovec, J.: Relational message passing for knowledge graph completion, pp. 1697–1707. ACM (2021). https://doi.org/10.1145/3447548.3467247

  24. Wang, X., Liu, K., Wang, D., Wu, L., Fu, Y., Xie, X.: Multi-level recommendation reasoning over knowledge graphs with reinforcement learning, pp. 2098–2108. ACM (2022). https://doi.org/10.1145/3485447.3512083

  25. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases (2015)

    Google Scholar 

  26. Zhang, Z., Zhuang, F., Zhu, H., Shi, Z., Xiong, H., He, Q.: Relational graph neural network with hierarchical attention for knowledge graph completion, pp. 9612–9619. AAAI Press (2020)

    Google Scholar 

  27. Zhao, Y., et al.: EIGAT: incorporating global information in local attention for knowledge representation learning. Knowl. Based Syst. 237, 107909 (2022). https://doi.org/10.1016/j.knosys.2021.107909

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ying, X. et al. (2024). Two-Stage Knowledge Graph Completion Based on Semantic Features and High-Order Structural Features. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14645. Springer, Singapore. https://doi.org/10.1007/978-981-97-2242-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2242-6_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2241-9

  • Online ISBN: 978-981-97-2242-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics