Skip to main content

AutoClues: Exploring Clustering Pipelines via AutoML and Diversification

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Abstract

AutoML has witnessed effective applications in the field of supervised learning – mainly in classification tasks – where the goal is to find the best machine-learning pipeline when a ground truth is available. This is not the case for unsupervised tasks that are by nature exploratory and they are performed to unveil hidden insights. Since there is no right result, analyzing different configurations is more important than returning the best-performing one. When it comes to exploratory unsupervised tasks – such as cluster analysis – different facets of the datasets could be interesting for the data scientist; for instance, data items can be effectively grouped together in different subspaces of features. In this paper, AutoClues explores and returns a dashboard of both relevant and diverse clusterings via AutoML and diversification. AutoML ensures that the explored pipelines for cluster analysis (including pre-processing steps) compute good clusterings. Then, diversification selects, out of the explored clusterings, the ones conveying different clues to the data scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This dimensionality reduction visualizes high-dimensional clusterings in 2D, preserving distance proportions. We apply it with the default Scikit-learn hyperparameters.

  2. 2.

    If an algorithm has no hyperparameters (\(\varLambda _{A} = \varnothing \)), we set a placeholder \(\varLambda _{A} = \{ 1 \}\).

  3. 3.

    https://github.com/big-unibo/autoclues.

  4. 4.

    In statistics, it serves as a baseline for assessing the significance in random variations.

  5. 5.

    We use the default hyperparameter \(\beta = 0.5\), and set \(\alpha \) according to the test at hand.

  6. 6.

    Metrics are computed on the original dataset (i.e., no t-SNE distortion).

References

  1. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. Technical report, Stanford (2006)

    Google Scholar 

  2. Barlow, H.B.: Unsupervised learning. Neural Comput. 1(3), 295–311 (1989)

    Article  Google Scholar 

  3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LoF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. , pp. 93–104 (2000)

    Google Scholar 

  4. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1(2), 224–227 (1979)

    Google Scholar 

  5. Dutta, D., Dutta, P., Sil, J.: Simultaneous continuous feature selection and k clustering by multi objective genetic algorithm. In: 2013 3rd IEEE International Advance Computing Conference (IACC), pp. 937–942 (2013)

    Google Scholar 

  6. ElShawi, R., Sakr, S.: TPE-autoclust: a tree-based pipline ensemble framework for automated clustering. In: 2022 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 1144–1153 (2022)

    Google Scholar 

  7. Enes, J., Expósito, R.R., Fuentes, J., Cacheiro, J.L., Touriño, J.: A pipeline architecture for feature-based unsupervised clustering using multivariate time series from HPC jobs. Inf. Fusion 93, 1–20 (2023)

    Article  Google Scholar 

  8. Francia, M., Giovanelli, J., Pisano, G.: Hamlet: a framework for human-centered automl via structured argumentation. Futur. Gener. Comput. Syst. 142, 182–194 (2023)

    Article  Google Scholar 

  9. Fränti, P., Sieranoja, S.: K-means properties on six clustering benchmark datasets (2018)

    Google Scholar 

  10. Gagolewski, M.: A framework for benchmarking clustering algorithms. SoftwareX 20, 101270 (2022)

    Article  Google Scholar 

  11. Giovanelli, J., Bilalli, B., Abelló, A.: Data pre-processing pipeline generation for autoETL. Inf. Syst. 108, 101957 (2022)

    Article  Google Scholar 

  12. Hancer, E.: A new multi-objective differential evolution approach for simultaneous clustering and feature selection. Eng. Appl. Artif. Intell. 87, 103307 (2020)

    Article  Google Scholar 

  13. Huang, J., Ng, M., Rong, H., Li, Z.: Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 657–668 (2005)

    Article  Google Scholar 

  14. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  15. Kamoshida, R., Ishikawa, F.: Automated clustering and knowledge acquisition support for beginners. Procedia Comput. Sci. 176, 1596–1605 (2020)

    Article  Google Scholar 

  16. Lensen, A., Xue, B., Zhang, M.: Using particle swarm optimisation and the silhouette metric to estimate the number of clusters, select features, and perform clustering. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 538–554. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_35

    Chapter  Google Scholar 

  17. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 1–39 (2012)

    Article  Google Scholar 

  18. Liu, Y., Li, S., Tian, W.: AutoCluster: meta-learning based ensemble method for automated unsupervised clustering. In: Karlapalem, K., et al. (eds.) PAKDD 2021. LNCS (LNAI), vol. 12714, pp. 246–258. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75768-7_20

    Chapter  Google Scholar 

  19. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learni. Res. 9(11) (2008)

    Google Scholar 

  20. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 7(6) (2017)

    Google Scholar 

  21. Poulakis, Y., Doulkeridis, C., Kyriazis, D.: Autoclust: a framework for automated clustering based on cluster validity indices. In: ICDM, pp. 1220–1225. IEEE (2020)

    Google Scholar 

  22. Prakash, J., Singh, P.K.: Gravitational search algorithm and k-means for simultaneous feature selection and data clustering: a multi-objective approach. Soft. Comput. 23(6), 2083–2100 (2019)

    Article  Google Scholar 

  23. Saha, S., Spandana, R., Ekbal, A., Bandyopadhyay, S.: Simultaneous feature selection and symmetry based clustering using multiobjective framework. Appl. Soft Comput. 29(C), 479–486 (2015)

    Google Scholar 

  24. Sobol, I.: The distribution of points in a cube and the accurate evaluation of integrals (in Russian) zh. Vychisl. Mat. i Mater. Phys 7, 784–802 (1967)

    Google Scholar 

  25. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-Weka: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD, pp. 847–855 (2013)

    Google Scholar 

  26. Thrun, M.C., Ultsch, A.: Clustering benchmark datasets exploiting the fundamental clustering problems. Data Brief 30, 105501 (2020)

    Article  Google Scholar 

  27. Toch, E., Lerner, B., Ben-Zion, E., Ben-Gal, I.: Analyzing large-scale human mobility data: a survey of machine learning methods and applications. Knowl. Inf. Syst. 58(3), 501–523 (2019)

    Article  Google Scholar 

  28. Tschechlov, D., Fritz, M., Schwarz, H.: Automl4clust: efficient autoML for clustering analyses, pp. 343–348 (2021)

    Google Scholar 

  29. Vieira, M.R., et al.: On query result diversification. In: 27th IEEE International Conference on Data Engineering (ICDE), pp. 1163–1174. IEEE (2011)

    Google Scholar 

  30. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1073–1080 (2009)

    Google Scholar 

  31. Zhao, Z., Liu, H.: Spectral feature selection for supervised and unsupervised learning. In: Proceedings of the 24th International Conference on Machine Learning (2007)

    Google Scholar 

  32. Zhu, L., Ma, B., Zhao, X.: Clustering validity analysis based on silhouette coefficient. J. Comput. Appl. 30(2), 139–141 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Giovanelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Francia, M., Giovanelli, J., Golfarelli, M. (2024). AutoClues: Exploring Clustering Pipelines via AutoML and Diversification. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14645. Springer, Singapore. https://doi.org/10.1007/978-981-97-2242-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2242-6_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2241-9

  • Online ISBN: 978-981-97-2242-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics