Skip to main content

SATJiP: Spatial and Augmented Temporal Jigsaw Puzzles for Video Anomaly Detection

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Abstract

Video Anomaly Detection (VAD) is a significant task, which refers to taking a video clip as input and outputting class labels, e.g., normal or abnormal, at the frame level. Wang et al. proposed a method called DSTJiP, which trains the model by solving Decoupled Spatial and Temporal Jigsaw Puzzles and achieves impressive VAD performance. However, the model sometimes fails to detect abnormal human actions where abnormal motions are accompanied by normal motions. The reason is that the model learns representations of little- and non-motion parts of training examples, resulting in being insensitive to abnormal motions. To circumvent this problem, we propose to solve Spatial and Augmented Temporal Jigsaw Puzzles (SATJiP) as an extension of DSTJiP. SATJiP encourages the model to focus on motions by a novel pretext task, enabling it to detect abnormal motions accompanied by normal motions. Experiments conducted on three standard VAD benchmarks demonstrate that SATJiP outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astrid, M., Zaheer, M.Z., Lee, J.Y., Lee, S.I.: Learning not to reconstruct anomalies. In: Proceedings of BMVC (2021)

    Google Scholar 

  2. Astrid, M., Zaheer, M.Z., Lee, S.I.: Synthetic temporal anomaly guided end-to-end video anomaly detection. In: Proceedings of ICCVW (2021)

    Google Scholar 

  3. Barbalau, A., et al.: SSMTL++: revisiting self-supervised multi-task learning for video anomaly detection. Comput. Vis. Image Underst. 229, 103656 (2023)

    Article  Google Scholar 

  4. Cai, R., Zhang, H., Liu, W., Gao, S., Hao, Z.: Appearance-motion memory consistency network for video anomaly detection. In: Proceedings of AAAI (2021)

    Google Scholar 

  5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Computi. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  6. Chang, Y., Tu, Z., Xie, W., Yuan, J.: Clustering driven deep autoencoder for video anomaly detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 329–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_20

    Chapter  Google Scholar 

  7. Chen, C., et al.: Comprehensive regularization in a bi-directional predictive network for video anomaly detection. In: Proceedings of AAAI, vol. 36 (2022)

    Google Scholar 

  8. Deng, H., Zhang, Z., Zou, S., Li, X.: Bi-directional frame interpolation for unsupervised video anomaly detection. In: Proceedings of WACV (2023)

    Google Scholar 

  9. Feichtenhofer, C., Li, Y., He, K., et al.: Masked autoencoders as spatiotemporal learners. In: Proceedings of NeurIPS, vol. 35 (2022)

    Google Scholar 

  10. Feng, X., Song, D., Chen, Y., Chen, Z., Ni, J., Chen, H.: Convolutional transformer based dual discriminator generative adversarial networks for video anomaly detection. In: Proceedings of MM (2021)

    Google Scholar 

  11. Georgescu, M., Barbalau, A., Ionescu, R.T., Khan, F.S., Popescu, M., Shah, M.: Anomaly detection in video via self-supervised and multi-task learning. In: Proceedings of CVPR (2021)

    Google Scholar 

  12. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of ICCV (2019)

    Google Scholar 

  13. Huang, X., Zhao, C., Wu, Z.: A video anomaly detection framework based on appearance-motion semantics representation consistency. In: Proceedings of ICASSP (2023)

    Google Scholar 

  14. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of CVPR (2017)

    Google Scholar 

  15. Ionescu, R.T., Khan, F.S., Georgescu, M.I., Shao, L.: Object-centric auto-encoders and dummy anomalies for abnormal event detection in video. In: Proceedings of CVPR (2019)

    Google Scholar 

  16. Lai, Y., Han, Y., Wang, Y.: Anomaly detection with prototype-guided discriminative latent embeddings. In: Proceedings of ICDM (2021)

    Google Scholar 

  17. Lee, S., Kim, H.G., Ro, Y.M.: BMAN: bidirectional multi-scale aggregation networks for abnormal event detection. IEEE Trans. Image Process. 29, 2395–2408 (2020)

    Article  Google Scholar 

  18. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection–a new baseline. In: Proceedings of CVPR (2018)

    Google Scholar 

  19. Liu, Y., Liu, J., Zhao, M., Yang, D., Zhu, X., Song, L.: Learning appearance-motion normality for video anomaly detection. In: Proceedings of ICME (2022)

    Google Scholar 

  20. Liu, Z., Nie, Y., Long, C., Zhang, Q., Li, G.: A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction. In: Proceedings of ICCV (2021)

    Google Scholar 

  21. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 FPS in MATLAB. In: Proceedings of ICCV (2013)

    Google Scholar 

  22. Luo, W., Liu, W., Gao, S.: Remembering history with convolutional LSTM for anomaly detection. In: Proceedings of ICME (2017)

    Google Scholar 

  23. Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked RNN framework. In: Proceedings of ICCV (2017)

    Google Scholar 

  24. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: Proceedings of CVPR (2010)

    Google Scholar 

  25. Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detection. In: Proceedings of CVPR (2020)

    Google Scholar 

  26. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of CVPR (2016)

    Google Scholar 

  27. Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. CoRR abs/ arXiV: 1804.02767 (2018)

  28. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: Visual explanations from deep networks via gradient-based localization. In: Proceedings of CVPR (2017)

    Google Scholar 

  29. Shen, L., Matsukawa, T., Suzuki, E.: Detecting video anomalous events with an enhanced abnormality score. In: Proceedings of PRICAI, vol. 13629 (2022)

    Google Scholar 

  30. Sun, C., Shi, C., Jia, Y., Wu, Y.: Learning event-relevant factors for video anomaly detection. In: Proceedings of AAAI, vol. 37 (2023)

    Google Scholar 

  31. Tang, Y., Zhao, L., Zhang, S., Gong, C., Li, G., Yang, J.: Integrating prediction and reconstruction for anomaly detection. Pattern Recogn. Lett. 129, 123–130 (2020)

    Article  Google Scholar 

  32. Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle. In: Proceedings of ITW, pp. 1–5 (2015)

    Google Scholar 

  33. Tong, Z., Song, Y., Wang, J., Wang, L.: VideoMAE: masked autoencoders are data-efficient learners for self-supervised video pre-training. In: Procedings of NeurIPS, vol. 35 (2022)

    Google Scholar 

  34. Vu, H., Nguyen, T.D., Travers, A., Venkatesh, S., Phung, D.: Energy-based localized anomaly detection in video surveillance. In: Proceedings of PAKDD (2017)

    Google Scholar 

  35. Wang, G., Wang, Y., Qin, J., Zhang, D., Bao, X., Huang, D.: Video anomaly detection by solving decoupled spatio-temporal jigsaw puzzles. In: Proceedings of ECCV (2022). https://doi.org/10.1007/978-3-031-20080-9_29

  36. Wang, X., Wang, X., et al.: Robust unsupervised video anomaly detection by multipath frame prediction. IEEE Trans. Neural Netw, Learn. Syst. 33(6), 2301–2312 (2022)

    Article  MathSciNet  Google Scholar 

  37. Wang, Y., Qin, C., Bai, Y., Xu, Y., Ma, X., Fu, Y.: Making reconstruction-based method great again for video anomaly detection. In: Proceedings of ICDM (2022)

    Google Scholar 

  38. Wang, Z., Zou, Y., Zhang, Z.: Cluster attention contrast for video anomaly detection. In: Proceedings of MM (2020)

    Google Scholar 

  39. Yang, Z., Liu, J., Wu, Z., Wu, P., Liu, X.: Video event restoration based on keyframes for video anomaly detection. In: Proceedings of CVPR (2023)

    Google Scholar 

  40. Ye, M., Peng, X., Gan, W., Wu, W., Qiao, Y.: AnoPCN: video anomaly detection via deep predictive coding network. In: Proceedings of MM (2019)

    Google Scholar 

  41. Yu, G., et al.: Cloze test helps: effective video anomaly detection via learning to complete video events. In: Proceedings of MM (2020)

    Google Scholar 

  42. Zhou, W., Li, Y., Zhao, C.: Object-guided and motion-refined attention network for video anomaly detection. In: Proceedings of ICME (2022)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by JST, the establishment of university fellowships towards the creation of science technology innovation, Grant Number JPMJFS2132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liheng Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, L., Matsukawa, T., Suzuki, E. (2024). SATJiP: Spatial and Augmented Temporal Jigsaw Puzzles for Video Anomaly Detection. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14645. Springer, Singapore. https://doi.org/10.1007/978-981-97-2242-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2242-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2241-9

  • Online ISBN: 978-981-97-2242-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics