Skip to main content

SeeM: A Shared Latent Variable Model for Unsupervised Multi-view Anomaly Detection

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Abstract

There have been multiple attempts to tackle the problem of identifying abnormal instances that have inconsistent behaviors in multi-view data (i.e., multi-view anomalies) but the problem still remains a challenge. In this paper, we propose an unsupervised approach with probabilistic latent variable models to detect multi-view anomalies in multi-view data. In our proposed model, we assume that views of an instance are generated from a shared latent variable that uniformly represents that instance. Since the latent variable is shared across views, an abnormal instance that exhibits inconsistencies across different views would have a lower likelihood. This is because, using a single latent variable, the model could not explain well all views that are inconsistent. Therefore, the likelihood of instances based on the proposed shared latent variable model can be used to detect multi-view anomalies. We derive a variational inference algorithm for learning the model parameters that scales well to large datasets. We compare our proposed method with several state-of-the-art methods for multi-view anomaly detection on several datasets. The results show that our method outperforms the existing methods in detecting multi-view anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/thanhphuong163/SeeM.

  2. 2.

    Experimentally, non-linear neural networks work well for our problem in most of datasets. In the experiments, we use \(\mu _{\theta }^{(v)}(z_n)=\text {Linear}(\text {ReLU}(\text {Linear}(z_n)))\).

  3. 3.

    In our experiments, \(\alpha =1\) and \(\sigma =0.001\) work well for most of the datasets.

  4. 4.

    \(L=1\) works well in our experiments.

  5. 5.

    We use Adam optimization algorithm.

  6. 6.

    https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original.

  7. 7.

    https://archive.ics.uci.edu/ml/datasets/glass+identification.

  8. 8.

    https://archive.ics.uci.edu/ml/datasets/heart+disease.

  9. 9.

    http://archive.ics.uci.edu/dataset/151/connectionist+bench+sonar+mines+vs+rocks.

  10. 10.

    https://archive.ics.uci.edu/dataset/602/dry+bean+dataset.

  11. 11.

    https://archive.ics.uci.edu/dataset/372/htru2.

  12. 12.

    https://archive.ics.uci.edu/dataset/186/wine+quality.

  13. 13.

    https://archive.ics.uci.edu/dataset/471/electrical+grid+stability+simulated+data.

  14. 14.

    https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope.

  15. 15.

    https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/svmguide2.

  16. 16.

    https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/svmguide4.

  17. 17.

    https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/vehicle.original.

  18. 18.

    http://odds.cs.stonybrook.edu/japanese-vowels-data/.

  19. 19.

    https://github.com/thanhphuong163/SeeM.

  20. 20.

    We use the implementations from scikit-learn.

  21. 21.

    https://github.com/microsoft/EdgeML.

  22. 22.

    https://github.com/xuhongzuo/deep-iforest.

  23. 23.

    http://sheng-li.org/Codes/SDM15_MLRA_Code.zip.

  24. 24.

    https://github.com/kailigo/mvod.

  25. 25.

    https://github.com/zwang-datascience/MVAD_Bayesian/.

  26. 26.

    https://github.com/auguscl/NCMOD.

  27. 27.

    https://github.com/wy54224/SRLSP.

  28. 28.

    https://lig-membres.imag.fr/grimal/data.html.

References

  1. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: ACM sigmod record. vol. 29, pp. 93–104. ACM (2000)

    Google Scholar 

  2. Chen, M.S., Huang, L., Wang, C.D., Huang, D.: Multi-view clustering in latent embedding space. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3513–3520 (2020)

    Google Scholar 

  3. Cheng, L., Wang, Y., Liu, X.: Neighborhood consensus networks for unsupervised multi-view outlier detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 7099–7106 (2021)

    Google Scholar 

  4. Frey, B.J., Dueck, D.: Mixture modeling by affinity propagation. In: Advances in Neural Information Processing Systems 18 (2005)

    Google Scholar 

  5. Geng, Y., Han, Z., Zhang, C., Hu, Q.: Uncertainty-aware multi-view representation learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 7545–7553 (2021)

    Google Scholar 

  6. Goyal, S., Raghunathan, A., Jain, M., Simhadri, H.V., Jain, P.: Drocc: deep robust one-class classification. ArXiv abs/2002.12718 (2020)

    Google Scholar 

  7. Handong, Z., Yun, F.: Dual-regularized multi-view outlier detection. In: IJCAI, pp. 4077–4083 (2015)

    Google Scholar 

  8. Iwata, T., Yamada, M.: Multi-view anomaly detection via robust probabilistic latent variable models. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  9. Ji, Y.X., et al.: Multi-view outlier detection in deep intact space. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 1132–1137. IEEE (2019)

    Google Scholar 

  10. Kingma, D., Welling, M.: Auto-encoding variational bayes (12 2014)

    Google Scholar 

  11. Li, K., Li, S., Ding, Z., Zhang, W., Fu, Y.: Latent discriminant subspace representations for multi-view outlier detection. In: Proceedings of the AAAI Conference on Artificial Intelligence 32(1) (Apr 2018)

    Google Scholar 

  12. Li, S., Shao, M., Fu, Y.: Multi-view low-rank analysis for outlier detection. In: Proceedings of the SIAM International Conference on Data Mining (2015)

    Google Scholar 

  13. Lin, Y., Gou, Y., Liu, Z., Li, B., Lv, J., Peng, X.: Completer: incomplete multi-view clustering via contrastive prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11174–11183 (2021)

    Google Scholar 

  14. Liu, A.Y., Lam, D.N.: Using consensus clustering for multi-view anomaly detection. In: 2012 IEEE Symposium on Security and Privacy Workshops, pp. 117–124 (2012)

    Google Scholar 

  15. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008)

    Google Scholar 

  16. Marcos Alvarez, A., Yamada, M., Kimura, A., Iwata, T.: Clustering-based anomaly detection in multi-view data. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 1545–1548 (2013)

    Google Scholar 

  17. Peng, X., Huang, Z., Lv, J., Zhu, H., Zhou, J.T.: Comic: Multi-view clustering without parameter selection. In: International Conference on Machine Learning, pp. 5092–5101. PMLR (2019)

    Google Scholar 

  18. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: International Conference on Machine Learning, pp. 1278–1286. PMLR (2014)

    Google Scholar 

  19. Seeland, M., Mäder, P.: Multi-view classification with convolutional neural networks. PLoS ONE 16(1), e0245230 (2021)

    Article  Google Scholar 

  20. Sheng, X.R., Zhan, D.C., Lu, S., Jiang, Y.: Multi-view anomaly detection: neighborhood in locality matters. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 4894–4901 (2019)

    Google Scholar 

  21. Wang, X., Peng, D., Hu, P., Sang, Y.: Adversarial correlated autoencoder for unsupervised multi-view representation learning. Knowledge-Based Systems (2019)

    Google Scholar 

  22. Wang, Y., Chen, C., Lai, J., Fu, L., Zhou, Y., Zheng, Z.: A self-representation method with local similarity preserving for fast multi-view outlier detection. ACM Trans. Knowl. Discov. Data 17(1), 1–20 (2023)

    Google Scholar 

  23. Wang, Z., Fan, M., Muknahallipatna, S., Lan, C.: Inductive multi-view semi-supervised anomaly detection via probabilistic modeling. In: 2019 IEEE International Conference on Big Knowledge (ICBK), pp. 257–264. IEEE (2019)

    Google Scholar 

  24. Wang, Z., Lan, C.: Towards a hierarchical bayesian model of multi-view anomaly detection. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 2420–2426 (7 2020), main track

    Google Scholar 

  25. Wang, Z., et al.: Learning probabilistic latent structure for outlier detection from multi-view data. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 53–65 (2021)

    Google Scholar 

  26. Xie, X., Sun, S.: Multi-view support vector machines with the consensus and complementarity information. IEEE TKDE 32(12), 2401–2413 (2019)

    Google Scholar 

  27. Xu, C., Guan, Z., Zhao, W., Niu, Y., Wang, Q., Wang, Z.: Deep multi-view concept learning. In: IJCAI, pp. 2898–2904. Stockholm (2018)

    Google Scholar 

  28. Xu, H., Pang, G., Wang, Y., Wang, Y.: Deep isolation forest for anomaly detection. IEEE Transactions on Knowledge and Data Engineering, pp. 1–14 (2023)

    Google Scholar 

  29. Xu, J., Li, W., Liu, X., Zhang, D., Liu, J., Han, J.: Deep embedded complementary and interactive information for multi-view classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6494–6501 (2020)

    Google Scholar 

  30. Zhao, H., Liu, H., Ding, Z., Fu, Y.: Consensus regularized multi-view outlier detection. IEEE Trans. Image Process. 27(1), 236–248 (2017)

    Article  MathSciNet  Google Scholar 

  31. Zhao, J., Xie, X., Xu, X., Sun, S.: Multi-view learning overview: Recent progress and new challenges. Inform. Fusion 38, 43–54 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This research is sponsored by NSF #1757207 and NSF #1914635.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan M. V. Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, P., Le, T.M.V. (2024). SeeM: A Shared Latent Variable Model for Unsupervised Multi-view Anomaly Detection. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14645. Springer, Singapore. https://doi.org/10.1007/978-981-97-2242-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2242-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2241-9

  • Online ISBN: 978-981-97-2242-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics