Skip to main content

SEE: Spherical Embedding Expansion for Improving Deep Metric Learning

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Abstract

The primary goal of deep metric learning is to construct a comprehensive embedding space that can effectively represent samples originating from both intra- and inter-classes. Although extensive prior work has explored diverse metric functions and innovative training strategies, much of this work relies on default training data. Consequently, the potential variations inherent within this data remain largely unexplored, constraining the model’s robustness to unseen images. In this context, we introduce the Spherical Embedding Expansion (SEE) method. SEE aims to uncover the latent semantic variations in training data. Especially, our method augments the embedding space with synthetic representations based on Max-Mahalanobis distribution (MMD) centers, which maximize the dispersion of these synthetic features without increasing computational costs. We evaluated the efficacy of SEE on four renowned standard benchmarks for the image retrieval task. The results demonstrate that SEE consistently enhances the performance of conventional methods when integrated with them, setting a new benchmark for deep metric learning performance across all settings. Particularly, the proposed method reveals its potency, especially when training with a low-dimensional embedding space and a large number of classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our code is available at https://github.com/leminhbinh0209/Spherical-Expansion.

References

  1. Aziere, N., Todorovic, S.: Ensemble deep manifold similarity learning using hard proxies. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7299–7307 (2019)

    Google Scholar 

  2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48 (2009)

    Google Scholar 

  3. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)

    Google Scholar 

  4. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2017)

    Google Scholar 

  5. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 539–546. IEEE (2005)

    Google Scholar 

  6. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  8. Duan, Y., Zheng, W., Lin, X., Lu, J., Zhou, J.: Deep adversarial metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2780–2789 (2018)

    Google Scholar 

  9. El-Nouby, A., Neverova, N., Laptev, I., Jégou, H.: Training vision transformers for image retrieval. arXiv preprint arXiv:2102.05644 (2021)

  10. Ermolov, A., Mirvakhabova, L., Khrulkov, V., Sebe, N., Oseledets, I.: Hyperbolic vision transformers: combining improvements in metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7409–7419 (2022)

    Google Scholar 

  11. Ge, W., Huang, W., Dong, D., Scott, M.R.: Deep metric learning with hierarchical triplet loss. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 272–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_17

    Chapter  Google Scholar 

  12. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  13. Gu, G., Ko, B.: Symmetrical synthesis for deep metric learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10853–10860 (2020)

    Google Scholar 

  14. Harwood, B., Kumar BG, V., Carneiro, G., Reid, I., Drummond, T.: Smart mining for deep metric learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2821–2829 (2017)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Huang, Y., et al.: CurricularFace: adaptive curriculum learning loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901–5910 (2020)

    Google Scholar 

  17. Kim, S., Kim, D., Cho, M., Kwak, S.: Proxy anchor loss for deep metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3238–3247 (2020)

    Google Scholar 

  18. Kim, S., Seo, M., Laptev, I., Cho, M., Kwak, S.: Deep metric learning beyond binary supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2288–2297 (2019)

    Google Scholar 

  19. Ko, B., Gu, G.: Embedding expansion: augmentation in embedding space for deep metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7255–7264 (2020)

    Google Scholar 

  20. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 554–561 (2013)

    Google Scholar 

  21. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1096–1104 (2016)

    Google Scholar 

  22. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  23. Nielsen, F., Sun, K.: Guaranteed bounds on the Kullback-Leibler divergence of univariate mixtures. IEEE Signal Process. Lett. 23(11), 1543–1546 (2016)

    Article  Google Scholar 

  24. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4004–4012 (2016)

    Google Scholar 

  25. Pang, T., Du, C., Zhu, J.: Max-mahalanobis linear discriminant analysis networks. In: International Conference on Machine Learning, pp. 4016–4025. PMLR (2018)

    Google Scholar 

  26. Qian, Q., Shang, L., Sun, B., Hu, J., Li, H., Jin, R.: SoftTriple Loss: deep metric learning without triplet sampling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6450–6458 (2019)

    Google Scholar 

  27. Qiao, L., Shi, Y., Li, J., Wang, Y., Huang, T., Tian, Y.: Transductive episodic-wise adaptive metric for few-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3603–3612 (2019)

    Google Scholar 

  28. Roth, K., Brattoli, B., Ommer, B.: MIC: mining interclass characteristics for improved metric learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8000–8009 (2019)

    Google Scholar 

  29. Teh, E.W., DeVries, T., Taylor, G.W.: ProxyNCA++: revisiting and revitalizing proxy neighborhood component analysis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 448–464. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_27

    Chapter  Google Scholar 

  30. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  31. Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas, I., Lopez-Paz, D., Bengio, Y.: Manifold mixup: Better representations by interpolating hidden states. In: International Conference on Machine Learning, pp. 6438–6447. PMLR (2019)

    Google Scholar 

  32. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD birds-200-2011 dataset (2011)

    Google Scholar 

  33. Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: NormFace: L2 hypersphere embedding for face verification. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1041–1049 (2017)

    Google Scholar 

  34. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)

    Google Scholar 

  35. Wang, J., et al.: Learning fine-grained image similarity with deep ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1386–1393 (2014)

    Google Scholar 

  36. Wang, X., Han, X., Huang, W., Dong, D., Scott, M.R.: Multi-similarity loss with general pair weighting for deep metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5022–5030 (2019)

    Google Scholar 

  37. Wang, X., Zhang, H., Huang, W., Scott, M.R.: Cross-batch memory for embedding learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6388–6397 (2020)

    Google Scholar 

  38. Wu, C.Y., Manmatha, R., Smola, A.J., Krahenbuhl, P.: Sampling matters in deep embedding learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2840–2848 (2017)

    Google Scholar 

  39. Zhai, A., Wu, H.Y.: Classification is a strong baseline for deep metric learning. arXiv preprint arXiv:1811.12649 (2018)

  40. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  41. Zhao, Yiru, Jin, Zhongming, Qi, Guo-jun, Lu, Hongtao, Hua, Xian-sheng: An adversarial approach to hard triplet generation. In: Ferrari, Vittorio, Hebert, Martial, Sminchisescu, Cristian, Weiss, Yair (eds.) ECCV 2018. LNCS, vol. 11213, pp. 508–524. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_31

    Chapter  Google Scholar 

  42. Zheng, W., Chen, Z., Lu, J., Zhou, J.: Hardness-aware deep metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 72–81 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by Institute for Information & communication Technology Planning & evaluation (IITP) grants funded by the Korean government MSIT: (No. 2022-0-01199, Graduate School of Convergence Security at Sungkyunkwan University), (No. 2022-0-01045, Self-directed Multi-Modal Intelligence for solving unknown, open domain problems), (No. 2022-0-00688, AI Platform to Fully Adapt and Reflect Privacy-Policy Changes), (No. 2021-0-02068, Artificial Intelligence Innovation Hub), (No. 2019-0-00421, AI Graduate School Support Program at Sungkyunkwan University), and (No. RS-2023-00230337, Advanced and Proactive AI Platform Research and Development Against Malicious Deepfakes). Lastly, this work was supported by Korea Internet & Security Agency (KISA) grant funded by the Korea government (PIPC) (No.RS-2023-00231200, Development of personal video information privacy protection technology capable of AI learning in an autonomous driving environment).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon S. Woo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, B.M., Woo, S.S. (2024). SEE: Spherical Embedding Expansion for Improving Deep Metric Learning. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14646. Springer, Singapore. https://doi.org/10.1007/978-981-97-2253-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2253-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2252-5

  • Online ISBN: 978-981-97-2253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics