Skip to main content

Towards Cost-Efficient Federated Multi-agent RL with Learnable Aggregation

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14646))

Included in the following conference series:

  • 128 Accesses

Abstract

Multi-agent reinforcement learning (MARL) often adopts centralized training with a decentralized execution (CTDE) framework to facilitate cooperation among agents. When it comes to deploying MARL algorithms in real-world scenarios, CTDE requires gradient transmission and parameter synchronization for each training step, which can incur disastrous communication overhead. To enhance communication efficiency, federated MARL is proposed to average the gradients periodically during communication. However, such straightforward averaging leads to poor coordination and slow convergence arising from the non-i.i.d. problem which is evidenced by our theoretical analysis. To address the two challenges, we propose a federated MARL framework, termed cost-efficient federated multi-agent reinforcement learning with learnable aggregation (FMRL-LA). Specifically, we use asynchronous critics to optimize communication efficiency by filtering out redundant local updates based on the estimation of agent utilities. A centralized aggregator rectifies these estimations conditioned on global information to improve cooperation and reduce non-i.i.d. impact by maximizing the composite system objectives. For a comprehensive evaluation, we extend a challenging multi-agent autonomous driving environment to the federated learning paradigm, comparing our method to competitive MARL baselines. Our findings indicate that FMRL-LA can adeptly balance performance and efficiency. Code and appendix can be found in https://github.com/ArronDZhang/FMRL_LA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abegaz, M., Erbad, A., Nahom, H., Albaseer, A., Abdallah, M., Guizani, M.: Multi-agent federated reinforcement learning for resource allocation in UAV-enabled internet of medical things networks. IoT-J (2023)

    Google Scholar 

  2. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM (2018)

    Google Scholar 

  3. Chaudhuri, R., Mukherjee, K., Narayanam, R., Vallam, R.D.: Collaborative reinforcement learning framework to model evolution of cooperation in sequential social dilemmas. In: PAKDD (2021)

    Google Scholar 

  4. Chen, T., Zhang, K., Giannakis, G.B., Başar, T.: Communication-efficient policy gradient methods for distributed reinforcement learning. TCNS (2021)

    Google Scholar 

  5. Christianos, F., Papoudakis, G., Rahman, A., Albrecht, S.V.: Scaling multi-agent reinforcement learning with selective parameter sharing. In: ICML (2021)

    Google Scholar 

  6. Du, X., Wang, J., Chen, S.: Multi-agent meta-reinforcement learning with coordination and reward shaping for traffic signal control. In: PAKDD (2023)

    Google Scholar 

  7. Foerster, J., Assael, I.A., De Freitas, N., Whiteson, S.: Learning to communicate with deep multi-agent reinforcement learning. In: NeurIPS (2016)

    Google Scholar 

  8. Hu, S., Zhu, F., Chang, X., Liang, X.: UPDeT: universal multi-agent reinforcement learning via policy decoupling with transformers. In: ICLR (2021)

    Google Scholar 

  9. Jin, H., Peng, Y., Yang, W., Wang, S., Zhang, Z.: Federated reinforcement learning with environment heterogeneity. In: AISTATS (2022)

    Google Scholar 

  10. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold: stochastic controlled averaging for federated learning. In: ICML (2020)

    Google Scholar 

  11. Khodadadian, S., Sharma, P., Joshi, G., Maguluri, S.T.: Federated reinforcement learning: linear speedup under Markovian sampling. In: ICML (2022)

    Google Scholar 

  12. Kuba, J.G., Chen, R., Wen, M., Wen, Y., Sun, F., Wang, J., Yang, Y.: Trust region policy optimisation in multi-agent reinforcement learning. In: ICLR (2022)

    Google Scholar 

  13. Li, Q., Peng, Z., Feng, L., Zhang, Q., Xue, Z., Zhou, B.: MetaDrive: composing diverse driving scenarios for generalizable reinforcement learning. TPAMI (2022)

    Google Scholar 

  14. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. In: MLSys (2020)

    Google Scholar 

  15. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. In: NeurIPS (2017)

    Google Scholar 

  16. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS (2017)

    Google Scholar 

  17. Mo, J., Xie, H.: A multi-player MAB approach for distributed selection problems. In: PAKDD (2023)

    Google Scholar 

  18. Pang, Y., Zhang, H., Deng, J.D., Peng, L., Teng, F.: Rule-based collaborative learning with heterogeneous local learning models. In: PAKDD (2022)

    Google Scholar 

  19. Peng, Z., Hui, K.M., Liu, C., Zhou, B.: Learning to simulate self-driven particles system with coordinated policy optimization. In: NeurIPS (2021)

    Google Scholar 

  20. Pinto Neto, E.C., Sadeghi, S., Zhang, X., Dadkhah, S.: Federated reinforcement learning in IoT: applications, opportunities and open challenges. Appl. Sci. (2023)

    Google Scholar 

  21. Rashid, T., Samvelyan, M., De Witt, C.S., Farquhar, G., Foerster, J., Whiteson, S.: Monotonic value function factorisation for deep multi-agent reinforcement learning. JMLR (2020)

    Google Scholar 

  22. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv:1707.06347 (2017)

  23. Song, Y., Chang, H.H., Liu, L.: Federated dynamic spectrum access through multi-agent deep reinforcement learning. In: GLOBECOM (2022)

    Google Scholar 

  24. Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent learning. arXiv:1706.05296 (2017)

  25. Wang, J., Joshi, G.: Cooperative SGD: a unified framework for the design and analysis of local-update SGD algorithms. JMLR (2021)

    Google Scholar 

  26. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization. In: NeurIPS (2020)

    Google Scholar 

  27. Wen, M., et al.: Multi-agent reinforcement learning is a sequence modeling problem. Front. Comput. Sci. (2022)

    Google Scholar 

  28. de Witt, C.S., et al.: Is independent learning all you need in the starcraft multi-agent challenge? arXiv:2011.09533 (2020)

  29. Xu, X., Li, R., Zhao, Z., Zhang, H.: The gradient convergence bound of federated multi-agent reinforcement learning with efficient communication. TWC (2023)

    Google Scholar 

  30. Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A., Wu, Y.: The surprising effectiveness of PPO in cooperative multi-agent games. In: NeurIPS (2022)

    Google Scholar 

  31. Zhou, X., Matsubara, S., Liu, Y., Liu, Q.: Bribery in rating systems: a game-theoretic perspective. In: PAKDD (2022)

    Google Scholar 

Download references

Acknowledgements

This work is supported by project DE200101610 funded by Australian Research Council and CSIRO’s Science Leader project R-91559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Wang, S., Chen, Z., Xu, X., Funiak, S., Liu, J. (2024). Towards Cost-Efficient Federated Multi-agent RL with Learnable Aggregation. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14646. Springer, Singapore. https://doi.org/10.1007/978-981-97-2253-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2253-2_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2252-5

  • Online ISBN: 978-981-97-2253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics