Skip to main content

MvRNA: A New Multi-view Deep Neural Network for Predicting Parkinson’s Disease

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14646))

Included in the following conference series:

  • 151 Accesses

Abstract

Magnetic Resonance Imaging (MRI) is a critical medical diagnostic tool that assists experts in precisely identifying lesions. However, due to its high-dimensional nature, it requires substantial storage resources. If only one MRI slice were to be used, a significant amount of information might be lost. To address these issues, we propose segmenting 3D MRI data and training these slices separately. We propose a new Multi-view Learning neural network based on ResNet and an Attention mechanism, called MvRNA. ResNet18 is selected as the backbone network, and the Squeeze-and-Excitation network is applied between blocks to extract features from slices. Additionally, we propose a new BWH (Basic Block with Hybrid Dilated Convolution) module to capture a broader range of receptive fields, thus acquiring additional spatial features. We obtained data from Parkinson’s Progression Markers Initiative (PPMI) and applied our method to distinguish between Healthy Control, Prodromal, and Parkinson’s disease patients. The experimental results demonstrate that our method achieved an accuracy of 81.84%.

L. Chen and Y. Zhou contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dmitriev, K., Marino, J., Baker, K., Kaufman, A.E.: Visual analytics of a computer-aided diagnosis system for pancreatic lesions. IEEE Trans. Visual Comput. Graphics 27(3), 2174–2185 (2021). https://doi.org/10.1109/TVCG.2019.2947037

    Article  Google Scholar 

  2. Han, L., Kamdar, M.R.: MRI to MGMT: predicting methylation status in glioblastoma patients using convolutional recurrent neural networks. In: Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, vol. 23, p. 331 (2018)

    Google Scholar 

  3. Tang, Z., Xu, Y., Jin, L., Aibaidula, A., Shen, D.: Deep learning of imaging phenotype and genotype for predicting overall survival time of glioblastoma patients. IEEE Trans. Med. Imaging PP(99), 1 (2020)

    Google Scholar 

  4. Thuseethan, S., Rajasegarar, S., Yearwood, J.: Detecting micro-expression intensity changes from videos based on hybrid deep CNN. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11441, pp. 387–399. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16142-2_30

    Chapter  Google Scholar 

  5. Xu, C., Tao, D., Xu, C.: A survey on multi-view learning. Computer Science (2013)

    Google Scholar 

  6. Zhou, W., Wang, H., Yang, Y.: Consensus Graph Learning for Incomplete Multi-view Clustering. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11439, pp. 529–540. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16148-4_41

    Chapter  Google Scholar 

  7. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018). https://doi.org/10.1109/CVPR.2018.00745

  8. Wang, P., et al.: Understanding convolution for semantic segmentation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1451–1460 (2018). https://doi.org/10.1109/WACV.2018.00163

  9. Marek, K., Jennings, D., Lasch, S., Siderowf, A., Taylor, P.: The Parkinson progression marker initiative (PPMI). Prog. Neurobiol. 95(4), 629–635 (2011)

    Article  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, no. 2 (2012)

    Google Scholar 

  11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv e-prints (2014)

    Google Scholar 

  12. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594

  13. Zhu, S.: Early diagnosis of Parkinsons disease by analyzing magnetic resonance imaging brain scans and patient characteristics (2022)

    Google Scholar 

  14. Erdaş, Ç.B., Sümer, E.: A deep learning method to detect Parkinson’s disease from MRI slices. SN Comput. Sci. 3(2), 1–7 (2022). https://doi.org/10.1007/s42979-022-01018-y

    Article  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  16. Chhabra, M., Kumar, R.: An efficient ResNet-50 based intelligent deep learning model to predict pneumonia from medical images. In: 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), pp. 1714–1721 (2022). https://doi.org/10.1109/ICSCDS53736.2022.9760995

  17. Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2Net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 652–662 (2021). https://doi.org/10.1109/TPAMI.2019.2938758

    Article  Google Scholar 

  18. Wang, Y., et al.: SwinMM: masked Multi-view with Swin transformers for 3D medical image segmentation. In: Greenspan, H., et al. (ed.) MICCAI 2023. MICCAI 2023. LNCS, vol. 14222. Springer, Cham. (2023). https://doi.org/10.1007/978-3-031-43898-1_47

  19. Liu, D., Gao, Y., Zhangli, Q., Yan, Z., Zhou, M., Metaxas, D.: Transfusion: multi-view divergent fusion for medical image segmentation with transformers. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_47

  20. Liu, J., Pan, Y., Wu, F.X., Wang, J.: Enhancing the feature representation of multi-modal MRI data by combining multi-view information for MCI classification. Neurocomputing 400, 322–332 (2020)

    Article  Google Scholar 

  21. Xue, Z., Zhang, T., Lin, L.: Progress prediction of Parkinson’s disease based on graph wavelet transform and attention weighted random forest. Expert Syst. Appl. 203, 117483 (2022)

    Google Scholar 

  22. Zhang, Y., Lei, H., Huang, Z., Li, Z., Liu, C.M., Lei, B.: Parkinson’s disease classification with self-supervised learning and attention mechanism. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp. 4601–4607 (2022). https://doi.org/10.1109/ICPR56361.2022.9956213

  23. Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: BAM: Bottleneck attention module (2018)

    Google Scholar 

  24. Zhang, Q.L., Yang, Y.B.: SA-Net: shuffle attention for deep convolutional neural networks. In: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2235–2239 (2021). https://doi.org/10.1109/ICASSP39728.2021.9414568

  25. Liu, M., Yang, J.: Image classification of brain tumor based on channel attention mechanism. J. Phys: Conf. Ser. 2035(1), 012029 (2021). https://doi.org/10.1088/1742-6596/2035/1/012029

  26. Zhou, Q., et al.: Grading of hepatocellular carcinoma using 3d SE-DenseNet in dynamic enhanced MR images. Comput. Biol. Med. 107, 47–57 (2019). https://doi.org/10.1016/j.compbiomed.2019.01.026

  27. Linqi, J., Chunyu, N., Jingyang, L.: Glioma classification framework based on SE-ResNeXt network and its optimization. IET Image Processing 2(16), 596–605 (2022)

    Google Scholar 

  28. Luo, M., et al.: A multi-granularity convolutional neural network model with temporal information and attention mechanism for efficient diabetes medical cost prediction. Comput. Biol. Med. 151, 106246 (2022). https://doi.org/10.1016/j.compbiomed.2022.106246

  29. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)

    Google Scholar 

  30. Jiang, W., Liu, M., Peng, Y., Wu, L., Wang, Y.: HDCB-Net: a neural network with the hybrid dilated convolution for pixel-level crack detection on concrete bridges. IEEE Trans. Industr. Inf. 17(8), 5485–5494 (2021). https://doi.org/10.1109/TII.2020.3033170

    Article  Google Scholar 

  31. Zhao, X., et al.: D2A U-NET: automatic segmentation of COVID-19 CT slices based on dual attention and hybrid dilated convolution. Comput. Biol. Med. 135, 104526 (2021)

    Article  Google Scholar 

  32. Xiao, Y., Fonov, V., Chakravarty, M.M., Beriault, S., Collins, D.L.: A dataset of multi-contrast population-averaged brain MRI atlases of a Parkinsons disease cohort. Data Brief 12(C), 370–379 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61976247), the Key Research and Development Program in Sichuan Province of China (No. 2023YFS0404), the Central guiding Local Science and Technology Development Fund (No. 23ZYZYTS0189), the Fundamental Research Funds for the Central Universities (Nos. 2682022KJ045 and 2682023ZTPY081), and the Open Research Fund Program of Data Recovery Key Laboratory of Sichuan Province (No. DRN2203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Zhou, Y., Zhang, X., Zhang, Z., Zheng, H. (2024). MvRNA: A New Multi-view Deep Neural Network for Predicting Parkinson’s Disease. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14646. Springer, Singapore. https://doi.org/10.1007/978-981-97-2253-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2253-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2252-5

  • Online ISBN: 978-981-97-2253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics