Skip to main content

Meta-Reinforcement Learning Algorithm Based on Reward and Dynamic Inference

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Abstract

Meta-Reinforcement Learning aims to rapidly address unseen tasks that share similar structures. However, the agent heavily relies on a large amount of experience during the meta-training phase, presenting a formidable challenge in achieving high sample efficiency. Current methods typically adapt to novel tasks within the Meta-Reinforcement Learning framework through task inference. Unfortunately, these approaches still exhibit limitations when faced with high-complexity task space. In this paper, we propose a Meta-Reinforcement Learning method based on reward and dynamic inference. We introduce independent reward and dynamic inference encoders, which sample specific context information to capture the deep-level features of task goals and dynamics. By reducing task inference space, agent effectively learns the shared structures across tasks and acquires a profound understanding of the task differences. We illustrate the performance degradation caused by the high task inference complexity and demonstrate that our method outperforms previous algorithms in terms of sample efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellemare, M.G., et al.: Autonomous navigation of stratospheric balloons using reinforcement learning. Nature 588(7836), 77–82. https://doi.org/10.1038/s41586-020-2939-8. https://www.nature.com/articles/s41586-020-2939-8

  2. Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci. Robot. 7(62), eabk2822. https://doi.org/10.1126/scirobotics.abk2822. https://www.science.org/doi/full/10.1126/scirobotics.abk2822

  3. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people. Behav. Brain Sci. 40, e253 (2017). https://doi.org/10.1017/S0140525X16001837

    Article  Google Scholar 

  4. Peng, M., Zhu, B., Jiao, J.: Linear representation meta-reinforcement learning for instant adaptation. arXiv arXiv:2101.04750v1 (2021)

  5. Beck, J., et al.: A survey of meta-reinforcement learning. arXiv arXiv:2301.08028 (2023). https://doi.org/10.48550/arXiv.2301.08028

  6. Imagawa, T., Hiraoka, T., Tsuruoka, Y.: Off-policy meta-reinforcement learning with belief-based task inference. IEEE Access 10, 49494–49507. https://doi.org/10.1109/ACCESS.2022.3170582. https://ieeexplore.ieee.org/abstract/document/9763505

  7. Wang, J.X., et al.: Learning to reinforcement learn. arXiv arXiv:1611.05763 (2017)

  8. Melo, L.C.: Transformers are meta-reinforcement learners. arXiv arXiv:2206.06614 (2022)

  9. Rakelly, K., Zhou, A., Quillen, D., Finn, C., Levine, S.: Efficient off-policy meta-reinforcement learning via probabilistic context variables, p. 10 (2019)

    Google Scholar 

  10. Jiang, P., Song, S., Huang, G.: Exploration with task information for meta reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst. 34(8), 4033–4046 (2023). https://doi.org/10.1109/TNNLS.2021.3121432. https://ieeexplore.ieee.org/document/9604770/

  11. Humplik, J., Galashov, A., Hasenclever, L., Ortega, P.A., Teh, Y.W., Heess, N.: Meta reinforcement learning as task inference. arXiv arXiv:1905.06424 (2019)

  12. Han, X., Wu, F.: Meta reinforcement learning with successor feature based context. arXiv arXiv:2207.14723 (2022)

  13. Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., Levine, S.: Meta-reinforcement learning of structured exploration strategies. In: Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper/2018/hash/4de754248c196c85ee4fbdcee89179bd-Abstract.html

  14. Stadie, B.C., et al.: Some considerations on learning to explore via meta-reinforcement learning. arXiv arXiv:1803.01118 (2018)

  15. Rothfuss, J., Lee, D., Clavera, I., Asfour, T., Abbeel, P.: ProMP: proximal meta-policy search (2018). https://doi.org/10.48550/arXiv.1810.06784. http://arxiv.org/abs/1810.06784

  16. Zintgraf, L., Shiarli, K., Kurin, V., Hofmann, K., Whiteson, S.: Fast context adaptation via meta-learning. In: Proceedings of the 36th International Conference on Machine Learning, pp. 7693–7702. PMLR (2018). ISSN 2640-3498. https://proceedings.mlr.press/v97/zintgraf19a.html

  17. Vuorio, R., Beck, J., Farquhar, G., Foerster, J., Whiteson, S.: No dice: an investigation of the bias- variance tradeoff in meta-gradients (2022)

    Google Scholar 

  18. Mendonca, R., Gupta, A., Kralev, R., Abbeel, P., Levine, S., Finn, C.: Guided meta-policy search. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/hash/d324a0cc02881779dcda44a675fdcaaa-Abstract.html

  19. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks, p. 10 (2017)

    Google Scholar 

  20. Korshunova, I., Degrave, J., Dambre, J., Gretton, A., Huszár, F.: Exchangeable models in meta reinforcement learning (2020)

    Google Scholar 

  21. Raileanu, R., Goldstein, M., Szlam, A., Fergus, R.: Fast adaptation via policy-dynamics value functions (2020). https://doi.org/10.48550/arXiv.2007.02879. http://arxiv.org/abs/2007.02879

  22. He, J.Z.Y., Raghunathan, A., Brown, D.S., Erickson, Z., Dragan, A.D.: Learning representations that enable generalization in assistive tasks (2022). https://doi.org/10.48550/arXiv.2212.03175. https://arxiv.org/abs/2212.03175v1

  23. Beck, J., Jackson, M.T., Vuorio, R., Whiteson, S.: Hypernetworks in meta-reinforcement learning (2022). https://doi.org/10.48550/arXiv.2210.11348. https://arxiv.org/abs/2210.11348v1

  24. Duan, Y., Schulman, J., Chen, X., Bartlett, P.L., Sutskever, I., Abbeel, P.: RL\(^{2}\): fast reinforcement learning via slow reinforcement learning. arXiv arXiv:1611.02779 (2017)

  25. Greenberg, I., Mannor, S., Chechik, G., Meirom, E.: Train hard, fight easy: robust meta reinforcement learning (2023). https://doi.org/10.48550/arXiv.2301.11147. http://arxiv.org/abs/2301.11147

  26. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1), 99–134 (1998). https://doi.org/10.1016/S0004-3702(98)00023-X. https://www.sciencedirect.com/science/article/pii/S000437029800023X

  27. Zintgraf, L., et al.: VariBAD: a very good method for Bayes-adaptive deep RL via meta-learning (2020). https://doi.org/10.48550/arXiv.1910.08348. https://arxiv.org/abs/1910.08348v2

  28. Yu, T., et al.: Meta-world: a benchmark and evaluation for multi-task and meta reinforcement learning, p. 17 (2021)

    Google Scholar 

  29. Yang, R., Xu, H., Wu, Y., Wang, X.: Multi-task reinforcement learning with soft modularization. arXiv arXiv:2003.13661 (2020)

  30. Li, L., Huang, Y., Chen, M., Luo, S., Luo, D., Huang, J.: Provably improved context-based offline meta-RL with attention and contrastive learning, p. 21 (2021)

    Google Scholar 

  31. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2022). https://doi.org/10.48550/arXiv.1312.6114. http://arxiv.org/abs/1312.6114

  32. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck (2019). https://doi.org/10.48550/arXiv.1612.00410. http://arxiv.org/abs/1612.00410

  33. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor (2018). https://doi.org/10.48550/arXiv.1801.01290. http://arxiv.org/abs/1801.01290

  34. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033 (2012). ISSN 2153-0866. https://doi.org/10.1109/IROS.2012.6386109. https://ieeexplore.ieee.org/abstract/document/6386109

Download references

Acknowledgments

This work was supported by Beijing University of Posts and Telecommunications China Mobile Research Institute Joint Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Zhang, C., Hu, Z. (2024). Meta-Reinforcement Learning Algorithm Based on Reward and Dynamic Inference. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14647. Springer, Singapore. https://doi.org/10.1007/978-981-97-2259-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2259-4_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2261-7

  • Online ISBN: 978-981-97-2259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics