Skip to main content

Improving Anti-money Laundering via Fourier-Based Contrastive Learning

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14647))

Included in the following conference series:

  • 144 Accesses

Abstract

Anti-money laundering (AML) aims to detect money laundering from daily transactions, which is the key frontier of combating financial crimes. Previous deep-learning AML methods are not robust enough. To address the problem, we propose a novel Fourier-based contrastive learning model (FCLM) to improve AML. With contrastive learning, FCLM can maintain prediction consistency and be more robust in the face of data perturbations. Experiments on both the synthetic benchmark IBM2023 and the real-world benchmark show that FCLM outperforms seven state-of-the-art baselines, demonstrating the effectiveness of the proposed Fourier-based contrastive learning model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://s3.ca-central-1.amazonaws.com/esentire-dot-com-assets/assets/resourcefiles/2022-Official-Cybercrime-Report.pdf.

  2. 2.

    https://www.kaggle.com/code/bigironsphere/basic-data-augmentation-feature-reduction.

  3. 3.

    https://www.kaggle.com/datasets/ealtman2019/ibm-transactions-for-anti-money-laundering-aml.

References

  1. Ahmed, A.A.A.: Anti-money laundering recognition through the gradient boosting classifier. Acad. Accounting Fin. Stud. J. 25(5), 1–11 (2021)

    Google Scholar 

  2. Ai, L.: Rule-based but risk-oriented approach for combating money laundering in Chinese financial sectors. J. Money Laundering Control 15(2), 198–209 (2012)

    Article  Google Scholar 

  3. Arslan, M., Guzel, M., Demirci, M., Ozdemir, S.: SMOTE and gaussian noise based sensor data augmentation. In: UBMK, pp. 1–5. IEEE (2019)

    Google Scholar 

  4. Bellomarini, L., Laurenza, E., Sallinger, E.: Rule-based anti-money laundering in financial intelligence units: experience and vision. RuleML+ RR 2644(Suppl.), 133–144 (2020)

    Google Scholar 

  5. Butgereit, L.: Anti money laundering: rule-based methods to identify funnel accounts. In: 2021 Conference on Information Communications Technology and Society (ICTAS), pp. 21–26 (2021)

    Google Scholar 

  6. Chai, Z., et al.: Towards learning to discover money laundering sub-network in massive transaction network. In: Proceedings of the AAAI Conference on Artificial Intelligence (2023)

    Google Scholar 

  7. Charitou, C., Garcez, A.D., Dragicevic, S.: Semi-supervised GANs for fraud detection. In: IJCNN, pp. 1–8 (2020)

    Google Scholar 

  8. Chen, J., Shen, Y., Ali, R.: Credit card fraud detection using sparse autoencoder and generative adversarial network. In: IEMCON, pp. 1054–1059. IEEE (2018)

    Google Scholar 

  9. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. CoRR abs/2002.05709 (2020). https://arxiv.org/abs/2002.05709

  10. Fursov, I., et al.: Sequence embeddings help detect insurance fraud. IEEE Access 10, 32060–32074 (2022)

    Article  Google Scholar 

  11. Heckbert, P.: Fourier transforms and the fast Fourier transform (FFT) algorithm. Comput. Graph. 2(1995), 15–463 (1995)

    Google Scholar 

  12. Hu, B., Zhang, Z., Shi, C., Zhou, J., Li, X., Qi, Y.: Cash-out user detection based on attributed heterogeneous information network with a hierarchical attention mechanism. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 946–953 (2019)

    Google Scholar 

  13. Kumar, A., Das, S., Tyagi, V., Shaw, R.N., Ghosh, A.: Analysis of classifier algorithms to detect Anti-money laundering. In: Bansal, J.C., Paprzycki, M., Bianchini, M., Das, S. (eds.) Computationally Intelligent Systems and their Applications. SCI, vol. 950, pp. 143–152. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0407-2_11

    Chapter  Google Scholar 

  14. Kute, D.V.: Explainable deep learning approach for detecting money laundering transactions in banking system. Ph. D. thesis (2022)

    Google Scholar 

  15. Li, X., Li, Y., Mo, X., Xiao, H., Shen, Y., Chen, L.: Diga: guided diffusion model for graph recovery in anti-money laundering. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4404–4413 (2023)

    Google Scholar 

  16. Liu, X., Zhang, X., Miao, Q.: A click fraud detection scheme based on cost-sensitive CNN and feature matrix. In: Tian, Y., Ma, T., Khan, M.K. (eds.) ICBDS 2019. CCIS, vol. 1210, pp. 65–79. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-7530-3_6

    Chapter  Google Scholar 

  17. Lo, W.W., Kulatilleke, G.K., Sarhan, M., Layeghy, S., Portmann, M.: Inspection-l: self-supervised GNN node embeddings for money laundering detection in bitcoin. Appl. Intell. 53, 19406–19417 (2023)

    Article  Google Scholar 

  18. Luo, X., et al.: ComGA: community-aware attributed graph anomaly detection. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 657–665 (2022)

    Google Scholar 

  19. Misra, S., Thakur, S., Ghosh, M., Saha, S.K.: An autoencoder based model for detecting fraudulent credit card transaction. Procedia Comput. Sci. 167, 254–262 (2020)

    Article  Google Scholar 

  20. Onishi, S., Meguro, S.: Rethinking data augmentation for tabular data in deep learning. arXiv preprint arXiv:2305.10308 (2023)

  21. Pambudi, B.N., Hidayah, I., Fauziati, S.: Improving money laundering detection using optimized support vector machine. In: 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pp. 273–278 (2019). https://doi.org/10.1109/ISRITI48646.2019.9034655

  22. Pareja, A., et al.: EvolveGCN: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363–5370 (2020)

    Google Scholar 

  23. Qiu, C., Kloft, M., Mandt, S., Rudolph, M.: Raising the bar in graph-level anomaly detection. arXiv preprint arXiv:2205.13845 (2022)

  24. Raiter, O.: Applying supervised machine learning algorithms for fraud detection in anti-money laundering. J. Mod. Issues Bus. Res. 1(1), 14–26 (2021)

    Google Scholar 

  25. Rashid, K.M., Louis, J.: Window-warping: a time series data augmentation of IMU data for construction equipment activity identification. In: ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, vol. 36, pp. 651–657. IAARC Publications (2019)

    Google Scholar 

  26. Ross, S., Hannan, M.: Money laundering regulation and risk-based decision-making. J. Money Laundering Control 10(1), 106–115 (2007)

    Article  Google Scholar 

  27. Sundarkumar, G.G., Ravi, V., Siddeshwar, V.: One-class support vector machine based undersampling: application to churn prediction and insurance fraud detection. In: 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–7. IEEE (2015)

    Google Scholar 

  28. Tang, J., Yin, J.: Developing an intelligent data discriminating system of anti-money laundering based on SVM. In: 2005 International Conference on Machine Learning and Cybernetics, vol. 6, pp. 3453–3457. IEEE (2005)

    Google Scholar 

  29. Tatulli, M.P., Paladini, T., D’Onghia, M., Carminati, M., Zanero, S.: HAMLET: a transformer based approach for money laundering detection. In: Dolev, S., Gudes, E., Paillier, P. (eds.) International Symposium on Cyber Security, Cryptology, and Machine Learning, vol. 13914, pp. 234–250. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-34671-2_17

  30. Tundis, A., Nemalikanti, S., Mühlhäuser, M.: Fighting organized crime by automatically detecting money laundering-related financial transactions. In: Proceedings of the 16th International Conference on Availability, Reliability and Security, pp. 1–10 (2021)

    Google Scholar 

  31. Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017). https://arxiv.org/abs/1706.03762

  32. Wang, D., et al.: Temporal-aware graph neural network for credit risk prediction. In: Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp. 702–710. SIAM (2021)

    Google Scholar 

  33. Weber, M., et al.: Anti-money laundering in bitcoin: experimenting with graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019)

  34. Yuan, M.: A transformer-based model integrated with feature selection for credit card fraud detection. In: 2022 7th International Conference on Machine Learning Technologies (ICMLT), pp. 185–190 (2022)

    Google Scholar 

  35. Zou, J., Zhang, J., Jiang, P.: Credit card fraud detection using autoencoder neural network. arXiv preprint arXiv:1908.11553 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meihan Tong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tong, M., Wang, S., Chen, X., Bei, J. (2024). Improving Anti-money Laundering via Fourier-Based Contrastive Learning. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14647. Springer, Singapore. https://doi.org/10.1007/978-981-97-2259-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2259-4_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2261-7

  • Online ISBN: 978-981-97-2259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics