Skip to main content

LEAF: A Less Expert Annotation Framework with Active Learning

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Abstract

Many modern ML applications rely on large amounts of labeled data, which can be difficult and time-consuming to obtain. Active Learning (AL) is an advanced solution that addresses this problem. AL not only enables efficient training with limited data but also speeds up the labeling process and saves on labor costs. However, existing AL methods primarily focus on optimizing the query sampling strategy for single-task and fixed model scenarios, which is inefficient for real-world multi-task scenarios. In multi-task AL, multi-model hyperparameters optimization and multi-query strategies bring new challenges that require more labor. In this paper, we propose LEAF, a Less Expert Annotation Framework, to tackle those challenges and reduce the workload of both data experts and technical experts. In LEAF, we apply AutoML techniques to automatically optimize hyperparameters for multi-task and multi-model AL and design a heuristic adaptive query strategy for multi-query strategy in AL. Experimental results on three publicly available datasets show that our framework requires fewer iterations, less training time, and higher precision than conventional Active Learning frameworks. Additionally, we present a detailed case study that demonstrates the practical use and high quality of our proposed framework for real-world data annotation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.openai.com.

  2. 2.

    https://www.cluebenchmarks.com/.

  3. 3.

    https://www.amazon.com.

  4. 4.

    www.cnki.cn.

References

  1. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus of English: the penn treebank. Comput. Linguis. 19(2), 313–330 (1993)

    Google Scholar 

  2. Miltsakaki, E., Robaldo, L., Lee, A., Joshi, A.: Sense annotation in the penn discourse treebank. In: Gelbukh, A. (ed.) CICLing 2008. LNCS, vol. 4919, pp. 275–286. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78135-6_23

    Chapter  Google Scholar 

  3. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models. J. Artifi. Intell. Res. 4, 129–145 (1996)

    Article  Google Scholar 

  4. Lin, B.Y., Lee, D.-H., Xu, F.F., Lan, O., Ren, X.: AlpacaTag: an active learning-based crowd annotation framework for sequence tagging. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Florence, Italy, pp. 58–63. Association for Computational Linguistics (2019)

    Google Scholar 

  5. Ning, K.-P., Zhao, X., Li, Y., Huang, S.-J.: Active learning for open-set annotation (2022)

    Google Scholar 

  6. Rotman, G., Reichart, R.: Multi-task active learning for pre-trained transformer-based models. Trans. Assoc. Comput. Linguis. 10, 1209–1228 (2022)

    Article  Google Scholar 

  7. Reichart, R., Tomanek, K., Hahn, U., Rappoport, A.: Multi-task active learning for linguistic annotations (2008)

    Google Scholar 

  8. Gilardi, F., Alizadeh, M., Kubli, M.: ChatGPT outperforms crowd-workers for text-annotation tasks. CoRR, vol. abs/2303.15056 (2023). https://doi.org/10.48550/arXiv.2303.15056

  9. Kuzman, T., Mozetic, I., Ljubesic, N.: ChatGPT: beginning of an end of manual linguistic data annotation? Use case of automatic genre identification. CoRR, vol. abs/2303.03953 (2023)

    Google Scholar 

  10. Reiss, M.V.: Testing the reliability of ChatGPT for text annotation and classification: a cautionary remark. CoRR, vol. abs/2304.11085 (2023). https://doi.org/10.48550/arXiv.2304.11085

  11. Wei, X., et al.: Zero-shot information extraction via chatting with ChatGPT. CoRR, vol. abs/2302.10205 (2023)

    Google Scholar 

  12. Rotman, G., Reichart, R.: Multi-task active learning for pre-trained transformer-based models (2022)

    Google Scholar 

  13. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms, pp. 2960–2968 (2012)

    Google Scholar 

  14. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  15. Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks, pp. 1070–1079. In: ACL (2008)

    Google Scholar 

  16. Galstyan, A., Cohen, P.R.: Empirical comparison of hard and soft label propagation for relational classification. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 98–111. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78469-2_13

    Chapter  Google Scholar 

  17. Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration (extended version) (2010)

    Google Scholar 

  18. Yogatama, D., Mann, G.: Efficient transfer learning method for automatic hyperparameter tuning (2014)

    Google Scholar 

  19. Luan, Y., He, L., Ostendorf, M., Hajishirzi, H.: Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3219–3232. Association for Computational Linguistics (2018)

    Google Scholar 

  20. Xu, L., et al.: Cluener2020: fine-grained named entity recognition dataset and benchmark for Chinese. CoRR, vol. abs/2001.04351 (2020)

    Google Scholar 

  21. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. The Association for Computational Linguistics, pp. 260–270 (2016)

    Google Scholar 

  22. Dai, Z., Wang, X., Ni, P., Li, Y., Li, G., Bai, X.: Named entity recognition using BERT BiLSTM CRF for Chinese electronic health records, pp. 1–5. IEEE (2019)

    Google Scholar 

  23. Deng, Y., et al.: A Chinese conceptual semantic feature dataset (CCFD). Behav. Res. Methods 53(4), 1697–1709 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) via grant 62202043,62172423,62166039,62366050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Âİ 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maoliniyazi, A., Ma, C., Meng, X., Peng, Y. (2024). LEAF: A Less Expert Annotation Framework with Active Learning. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14647. Springer, Singapore. https://doi.org/10.1007/978-981-97-2259-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2259-4_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2261-7

  • Online ISBN: 978-981-97-2259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics