Skip to main content

Distributional Kernel: An Effective and Efficient Means for Trajectory Retrieval

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14649))

Included in the following conference series:

  • 118 Accesses

Abstract

In this paper, we propose a new and powerful way to represent trajectories and measure the distance between them using a distributional kernel. Our method has two unique properties: (i) the identity property which ensures that dissimilar trajectories have no short distances, and (ii) a runtime orders of magnitude faster than that of existing distance measures. An extensive evaluation on several large real-world trajectory datasets confirms that our method is more effective and efficient in trajectory retrieval tasks than traditional and deep learning-based distance measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., Wenk, C.: Fréchet distance for curves, revisited. In: Azar, Y., Erlebach, T. (eds.) Algorithms - ESA 2006. Lecture Notes in Computer Science, vol. 4168, pp. 52–63. Springer, Berlin (2006). https://doi.org/10.1007/11841036_8

    Chapter  Google Scholar 

  2. Beecks, C., Uysal, M.S., Seidl, T.: Signature quadratic form distance. In: Proceedings of the ACM International Conference on Image and Video Retrieval, pp. 438–445 (2010)

    Google Scholar 

  3. Chen, H., Liu, Y., Hu, C., Zhang, X.: Vulnerable road user trajectory prediction for autonomous driving using a data-driven integrated approach. IEEE Trans. Intell. Transp. Syst. 24(7), 7306–7317 (2023)

    Article  Google Scholar 

  4. Deng, L., Sun, H., Sun, R., Zhao, Y., Su, H.: Efficient and effective similar subtrajectory search: a spatial-aware comprehension approach. ACM Trans. Intell. Syst. Technol. 13(3), 1–22 (2022)

    Article  Google Scholar 

  5. Gold, O., Sharir, M.: Dynamic time warping and geometric edit distance: breaking the quadratic barrier. ACM Trans. Algorithms 14(4), 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  6. Gupta, V., Bedathur, S., De, A.: Learning temporal point processes for efficient retrieval of continuous time event sequences. In: Proceedings of the AAAI Conference on Artificial Intelligence,

    Google Scholar 

  7. Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5323), 34–35 (1971)

    Article  Google Scholar 

  8. Li, X., Zhao, K., Cong, G., Jensen, C.S., Wei, W.: Deep representation learning for trajectory similarity computation. In: Proceedings of the 34th International Conference on Data Engineering, pp. 617–628. IEEE (2018)

    Google Scholar 

  9. Muandet, K., et al.: Kernel mean embedding of distributions: a review and beyond. Found. Trends® Mach. Learn. 10(1-2), 1–141 (2017)

    Google Scholar 

  10. Muandet, K., Fukumizu, K., Sriperumbudur, B., Schölkopf, B.: Kernel mean embedding of distributions: a review and beyond. Found. Trends Mach. Learn. 10(1–2), 1–141 (2017)

    Article  Google Scholar 

  11. Omohundro, S.M.: Five Balltree Construction Algorithms. International Computer Science Institute Berkeley, Berkeley (1989)

    Google Scholar 

  12. Su, H., Liu, S., Zheng, B., Zhou, X., Zheng, K.: A survey of trajectory distance measures and performance evaluation. VLDB J. 29, 3–32 (2020)

    Article  Google Scholar 

  13. Taha, A.A., Hanbury, A.: An efficient algorithm for calculating the exact Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2153–2163 (2015)

    Article  Google Scholar 

  14. Tavenard, R., Malinowski, S., Chapel, L., Bailly, A., Sanchez, H., Bustos, B.: Efficient temporal kernels between feature sets for time series classification. In: Ceci, M., Hollmen, J., Todorovski, L., Vens, C., Dzeroski, S. (eds.) Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science(), vol. 10535, pp. 528–543. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_32

    Chapter  Google Scholar 

  15. Ting, K.M., Xu, B.C., Washio, T., Zhou, Z.H.: Isolation distributional kernel: a new tool for kernel based anomaly detection. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 198–206 (2020)

    Google Scholar 

  16. Ting, K.M., Zhu, Y., Zhou, Z.H.: Isolation Kernel and its effect on SVM. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2329–2337 (2018)

    Google Scholar 

  17. Wang, Z., Long, C., Cong, G., Liu, Y.: Efficient and effective similar subtrajectory search with deep reinforcement learning. Proc. VLDB Endowment 13(12), 2312–2325 (2020)

    Article  Google Scholar 

  18. Yang, W., Wang, S., Sun, Y., Peng, Z.: Fast dataset search with earth mover’s distance. Proc. VLDB Endowment 15(11), 2517–2529 (2022)

    Article  Google Scholar 

  19. Yao, D., Cong, G., Zhang, C., Bi, J.: Computing trajectory similarity in linear time: a generic seed-guided neural metric learning approach. In: IEEE International Conference on Data Engineering, pp. 1358–1369. IEEE (2019)

    Google Scholar 

  20. Yao, D., Hu, H., Du, L., Cong, G., Han, S., Bi, J.: TrajGAT: a graph-based long-term dependency modeling approach for trajectory similarity computation. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2275–2285 (2022)

    Google Scholar 

  21. Yi, B.K., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. In: Proceedings of the 14th International Conference on Data Engineering, pp. 201–208. IEEE (1998)

    Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant No. 62076120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shang, Y., Ting, K.M., Wang, Z., Wang, Y. (2024). Distributional Kernel: An Effective and Efficient Means for Trajectory Retrieval. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14649. Springer, Singapore. https://doi.org/10.1007/978-981-97-2262-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2262-4_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2264-8

  • Online ISBN: 978-981-97-2262-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics