Skip to main content

Knowledge-Infused Optimization for Parameter Selection in Numerical Simulations

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14650))

Included in the following conference series:

  • 559 Accesses

Abstract

Many engineering applications rely on simulations based on partial differential equations. Different numerical schemes to approximate solutions exist. These schemes typically require setting parameters to appropriately model the problem at hand. We study the problem of parameter selection for applications that rely on simulations, where standard methods like grid search are computationally prohibitive. Our solution supports engineers in setting parameters based on knowledge gained through analyzing metadata acquired while partially executing specific simulations. Selecting these so-called farming runs of simulations is guided by an optimization algorithm that leverages the acquired knowledge. Experiments demonstrate that our solution outperforms state-of-the-art approaches and generalizes to a wide range of application settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    anonymous.4open.science/r/simulation-optimizer-E691.

References

  1. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  Google Scholar 

  2. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math. Softw. (TOMS) 38(1), 1–25 (2011)

    MathSciNet  Google Scholar 

  3. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org

  4. Halkidi, M., Vazirgiannis, M.: Clustering validity assessment: finding the optimal partitioning of a data set. In: IEEE ICDM (2001)

    Google Scholar 

  5. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49(6) (1952)

    Google Scholar 

  6. Jiménez, J.: pyGPGO Python package (2020). https://github.com/josejimenezluna/pyGPGO

  7. Kühnert, J., Göddeke, D., Herschel, M.: Provenance-integrated parameter selection and optimization in numerical simulations. In: USENIX TAPP (2021)

    Google Scholar 

  8. Lashkov, A., Rubinsky, S., Eistrikh-Heller, P.: S_dbw 0.4.0 (2019). https://pypi.org/project/s-dbw/

  9. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 1–52 (2017)

    MathSciNet  Google Scholar 

  10. Li, X.S., Shao, M.: A supernodal approach to incomplete lu factorization with partial pivoting. ACM Trans. Math. Softw. (TOMS) 37(4), 1–20 (2011)

    Article  MathSciNet  Google Scholar 

  11. Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering validation measures. In: IEEE ICDM (2010)

    Google Scholar 

  12. Saad, Y.: ILUT: a dual threshold incomplete LU factorization. Numer. Linear Algebra Appl. 1(4) (1994)

    Google Scholar 

  13. Seeger, M.: Gaussian processes for machine learning. Int. J. Neural Syst. 14(02), 69–106 (2004)

    Article  Google Scholar 

  14. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., Freitas, N.D.: Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2015)

    Article  Google Scholar 

  15. Van der Vorst, H.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MathSciNet  Google Scholar 

  16. Yang, L., Shami, A.: On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 415, 295–316 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2075 – 390740016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Meißner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meißner, J., Göddeke, D., Herschel, M. (2024). Knowledge-Infused Optimization for Parameter Selection in Numerical Simulations. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14650. Springer, Singapore. https://doi.org/10.1007/978-981-97-2266-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2266-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2265-5

  • Online ISBN: 978-981-97-2266-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics