Skip to main content

Kernel Representation Learning with Dynamic Regime Discovery for Time Series Forecasting

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14650))

Included in the following conference series:

  • 137 Accesses

Abstract

Correlations between variables in complex ecosystems such as weather and financial markets lead to a great amount of dynamic and co-evolving time series data, posing a significant challenge to the current forecast methods. Discovering dynamic patterns (aka regimes) is crucial to an accurate forecast, especially for the interpretability of the outcome. In this paper, we develop a kernel-based method to learn effective representations for capturing dynamically changing regimes. Each such representation accounts for the non-linear interactions among multiple time series, thereby facilitating more effective regime discovery. On the basis of regime information, we build a regression model to forecast all the variables simultaneously for the next multiple time points. The results on six real-life datasets demonstrate that our method can yield the most accurate forecast (with the lowest root mean square error) in comparison with seven predictive models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.google.com/trends/.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets/.

  3. 3.

    https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018.

References

  1. Ardia, D., Bluteau, K., Boudt, K., Catania, L., Trottier, D.A.: Markov-switching garch models in r: the MSGARCH package. J. Stat. Softw. (2019)

    Google Scholar 

  2. Bazzi, M., Blasques, F., Koopman, S.J., Lucas, A.: Time-varying transition probabilities for Markov regime switching models. J. Time Series Anal. 38, 458–478 (2017)

    Article  MathSciNet  Google Scholar 

  3. Box, G.: Box and jenkins: time series analysis, forecasting and control. In: A Very British Affair, pp. 161–215. Springer, Heidelberg (2013). https://doi.org/10.1057/9781137291264_6

  4. Chatigny, P., Chen, R., Patenaude, J.M., Wang, S.: A variable-order regime switching model to identify significant patterns in financial markets. In: ICDM, pp. 887–892. IEEE (2018)

    Google Scholar 

  5. Chen, R., Paschalidis, I.: Selecting optimal decisions via distributionally robust nearest-neighbor regression. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  6. Dong, X., Dang, B., Zang, H., Li, S., Ma, D.: The prediction trend of enterprise financial risk based on machine learning arima model. J. Theory Pract. Eng. Sci. 4(01), 65–71 (2024)

    Google Scholar 

  7. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE TPAMI 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  8. Hochstein, A., Ahn, H.I., Leung, Y.T., Denesuk, M.: Switching vector autoregressive models with higher-order regime dynamics application to prognostics and health management. In: PHM, pp. 1–10. IEEE (2014)

    Google Scholar 

  9. Lu, C., Feng, J., Lin, Z., Mei, T., Yan, S.: Subspace clustering by block diagonal representation. IEEE TPAMI 41(2), 487–501 (2018)

    Article  Google Scholar 

  10. Matsubara, Y., Sakurai, Y.: Regime shifts in streams: real-time forecasting of co-evolving time sequences. In: ACM SIGKDD, pp. 1045–1054 (2016)

    Google Scholar 

  11. Matsubara, Y., Sakurai, Y.: Dynamic modeling and forecasting of time-evolving data streams. In: ACM SIGKDD, pp. 458–468 (2019)

    Google Scholar 

  12. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-beats: Neural basis expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437 (2019)

  13. Qiao, Y., Jin, J., Ni, F., Yu, J., Chen, W.: Application of machine learning in financial risk early warning and regional prevention and control: a systematic analysis based on shap. World Trends Realities Accompany. Prob. Dev. 331 (2023)

    Google Scholar 

  14. Song, X., et al.: Zeroprompt: streaming acoustic encoders are zero-shot masked lms. arXiv preprint arXiv:2305.10649 (2023)

  15. Xu, C., Yu, J., Chen, W., Xiong, J.: Deep learning in photovoltaic power generation forecasting: Cnn-lstm hybrid neural network exploration and research. In: The 3rd International scientific and practical conference “Technologies in education in schools and universities”, Athens, Greece, 23–26 January 2024, vol. 363, p. 295. International Science Group (2024)

    Google Scholar 

  16. Xu, K., Chen, L., Wang, S.: Data-driven kernel subspace clustering with local manifold preservation. In: 2022 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 876–884. IEEE (2022)

    Google Scholar 

  17. Xu, K., Chen, L., Wang, S.: A multi-view kernel clustering framework for categorical sequences. Expert Syst. Appl. 116637 (2022)

    Google Scholar 

  18. Xu, K., Chen, L., Wang, S., Wang, B.: A self-representation model for robust clustering of categorical sequences. In: U, L.H., Xie, H. (eds.) APWeb-WAIM 2018. LNCS, vol. 11268, pp. 13–23. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01298-4_2

    Chapter  Google Scholar 

  19. Ye, J., et al.: Multiplexed oam beams classification via fourier optical convolutional neural network. In: 2023 IEEE Photonics Conference (IPC), pp. 1–2. IEEE (2023)

    Google Scholar 

  20. Ye, J., Solyanik, M., Hu, Z., Dalir, H., Nouri, B.M., Sorger, V.J.: Free-space optical multiplexed orbital angular momentum beam identification system using fourier optical convolutional layer based on 4f system. In: Complex Light and Optical Forces XVII, vol. 12436, pp. 70–80. SPIE (2023)

    Google Scholar 

  21. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11106–11115 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunpeng Xu , Lifei Chen or Shengrui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, K., Chen, L., Patenaude, JM., Wang, S. (2024). Kernel Representation Learning with Dynamic Regime Discovery for Time Series Forecasting. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14650. Springer, Singapore. https://doi.org/10.1007/978-981-97-2266-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2266-2_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2265-5

  • Online ISBN: 978-981-97-2266-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics