Skip to main content

Dynamic Multi-objective Operation Optimization of Blast Furnace Based on Evolutionary Algorithm

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2061))

  • 20 Accesses

Abstract

Blast furnaces play a critical role in the steel industry, and their operational optimization is crucial for energy conservation and emissions reduction. This paper examines the impact of changes in operational conditions on blast furnace performance. We propose a dynamic multi-objective optimization algorithm based on multiple short time series (MT-DC-RVEA) to solve the constructed dynamic multi-objective operational optimization model for blast furnaces. Experimental results validate the effectiveness of the proposed algorithm in solving the operational optimization model for blast furnace operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, A., Agarwal, M.K., Kothari, A.K., Mallick, S.: A mathematical model to control thermal stability of blast furnace using proactive thermal indicator. Ironmaking & Steelmaking 46(2), 133–140 (2019). https://doi.org/10.1080/03019233.2017.1353765

    Article  Google Scholar 

  2. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016). https://doi.org/10.1109/TEVC.2016.2519378

    Article  Google Scholar 

  3. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011). https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  4. Li, Y., Li, H., Zhang, J., Zhang, S., Yin, Y.: Burden surface decision using mode with topsis in blast furnace ironmkaing. IEEE Access 8, 35712–35725 (2020). https://doi.org/10.1109/ACCESS.2020.2974882

    Article  Google Scholar 

  5. Mahanta, B.K., Chakraborti, N.: Tri-objective optimization of noisy dataset in blast furnace iron-making process using evolutionary algorithms. Mater. Manuf. Processes 35(6), 677–686 (2020). https://doi.org/10.1080/10426914.2019.1643472

    Article  Google Scholar 

  6. Molina, J., Santana, L.V., Hernández-Díaz, A.G., Coello, C.A.C., Caballero, R.: g-dominance: reference point based dominance for multiobjective metaheuristics. Eur. J. Oper. Res. 197(2), 685–692 (2009). https://doi.org/10.1016/j.ejor.2008.07.015

    Article  Google Scholar 

  7. Muruganantham, A., Tan, K.C., Vadakkepat, P.: Evolutionary dynamic multiobjective optimization via Kalman filter prediction. IEEE Trans. Cybern. 46(12), 2862–2873 (2016). https://doi.org/10.1109/TCYB.2015.2490738

    Article  Google Scholar 

  8. Naito, M., Takeda, K., Matsui, Y.: Ironmaking technology for the last 100 years: deployment to advanced technologies from introduction of technological know-how, and evolution to next-generation process. ISIJ Int. 55(1), 7–35 (2015). https://doi.org/10.2355/isijinternational.55.7

    Article  Google Scholar 

  9. Tian, Y., Cheng, R., Zhang, X., Cheng, F., Jin, Y.: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans. Evol. Comput. 22(4), 609–622 (2018). https://doi.org/10.1109/TEVC.2017.2749619

    Article  Google Scholar 

  10. Zhou, P., Guo, D., Chai, T.: Data-driven predictive control of molten iron quality in blast furnace ironmaking using multi-output LS-SVR based inverse system identification. Neurocomputing 308, 101–110 (2018). https://doi.org/10.1016/j.neucom.2018.04.060

    Article  Google Scholar 

  11. Zhou, P., Guo, D., Wang, H., Chai, T.: Data-driven robust M-LS-SVR-based NARX modeling for estimation and control of molten iron quality indices in blast furnace ironmaking. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4007–4021 (2017). https://doi.org/10.1109/TNNLS.2017.2749412

    Article  Google Scholar 

  12. Zhou, Q., et al.: Multi-objective optimization of blast furnace dosing and operation based on NSGA-II. In: 2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT), pp. 165–169. IEEE (2022). https://doi.org/10.1109/CEECT55960.2022.10030395

  13. Zhou, Z.H.: Machine Learning. Springer, Heidelberg (2021)

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fund for the National Natural Science Foundation of China (62073067, 62303102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianpeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Y., Zhang, J., Jiang, M., Fu, K., Deng, Q., Wang, X. (2024). Dynamic Multi-objective Operation Optimization of Blast Furnace Based on Evolutionary Algorithm. In: Pan, L., Wang, Y., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2023. Communications in Computer and Information Science, vol 2061. Springer, Singapore. https://doi.org/10.1007/978-981-97-2272-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2272-3_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2271-6

  • Online ISBN: 978-981-97-2272-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics