Abstract
The Traveling Salesman Problem (TSP) is a key focus in the fields of computer science and operations research, widely applied in areas such as data collection, search and rescue, robot task allocation and scheduling, etc. This paper, by reviewing recent literature, first introduces the definition and mathematical model of the TSP, followed by an exposition of the concepts of classical TSP. Subsequently, an analysis of solving algorithms for the classical Traveling Salesman Problem is conducted, categorizing them into exact algorithms, heuristic algorithms, and learning-based algorithms. The paper then provides an assessment of the advantages and disadvantages associated with these three categories of algorithms, accompanied by an elaborate overview of the research advancements made in recent years. Future research on TSP will focus on exploring undeveloped algorithms and integrating stable ones to address larger-scale problems, enhance solution quality, avoid local optima, and improve solution efficiency. Breakthroughs are anticipated in the application of learning-based methods for solving the Traveling Salesman Problem (TSP).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)
Xu, S., Panwar, S.S., Kodialam, M., Lakshman, T.V.: Deep neural network approximated dynamic programming for combinatorial optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 1684–1691 (2020)
Lawler, E.L., Wood, D.E.: Branch-and-bound methods: a survey. Oper. Res. 14(4), 699–719 (1966)
Zhang, W., Sauppe, J.J., Jacobson, S.H.: Results for the close-enough traveling salesman problem with a branch-and-bound algorithm. Comput. Optim. Appl. 85(2), 369–407 (2023)
Donog, C.: A relaxation algorithm for solving the traveling salesman problem. Shandong Sci. 32(4), 74–79 (2019)
Weise, T., Jiang, Y., Qi, Q., Liu, W.: A branch-and-bound-based crossover operator for the traveling salesman problem. Int. J. Cogn. Inform. Nat. Intell. (IJCINI) 13(3), 1–18 (2019)
Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
Toathom, T., Champrasert, P.: The complete subtour order crossover in genetic algorithms for traveling salesman problem solving. In: 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), pp. 904–907. IEEE (2022)
Zhang, P., Wang, J., Tian, Z., Sun, S., Li, J., Yang, J.: A genetic algorithm with jumping gene and heuristic operators for traveling salesman problem. Appl. Soft Comput. 127, 109339 (2022)
Xu, J., Han, F., Liu, Q., Xue, X.: Bioinformation heuristic genetic algorithm for solving TSP. J. Syst. Simul. 34(8), 1811–1819 (2022)
Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano (1992)
Yang, K., You, X., Liu, S., Pan, H.: A novel ant colony optimization based on game for traveling salesman problem. Appl. Intell. 50, 4529–4542 (2020)
Stodola, P., Michenka, K., Nohel, J., Rybanský, M.: Hybrid algorithm based on ant colony optimization and simulated annealing applied to the dynamic traveling salesman problem. Entropy 22(8), 884 (2020)
Skinderowicz, R.: Improving ant colony optimization efficiency for solving large tsp instances. Appl. Soft Comput. 120, 108653 (2022)
Li, W., Wang, C., Huang, Y., Cheung, Y.M.: Heuristic smoothing ant colony optimization with differential information for the traveling salesman problem. Appl. Soft Comput. 133, 109943 (2023)
Soh, M., Tsofack, B.N., Djamegni, C.T.: A hybrid algorithm based on multi-colony ant optimization and lin-kernighan for solving the traveling salesman problem. Rev. Afr. Recherche Inform. Math. Appl. 35 (2022)
Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)
Tang, A., Han, T., Xu, D., Xie, L.: Chaotic elite Harris’ hawk optimization algorithm. Computer Applications 41(8), 2265–2272 (2021)
Gharehchopogh, F.S., Abdollahzadeh, B.: An efficient Harris hawk optimization algorithm for solving the travelling salesman problem. Clust. Comput. 25(3), 1981–2005 (2022)
Chen, H., Heidari, A.A., Chen, H., Wang, M., Pan, Z., Gandomi, A.H.: Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies. Futur. Gener. Comput. Syst. 111, 175–198 (2020)
Hussien, A.G., Amin, M.: A self-adaptive harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection. Int. J. Mach. Learn. Cybern. 1–28 (2022)
Basturk, B.: An artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE Swarm Intelligence Symposium, Indianapolis, USA, vol. 2006, p. 12 (2006)
Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspir. Comput. 2(2), 78–84 (2010)
Yang, X. S., Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009)
Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)
Tang, R., Fong, S., Yang, X. S., Deb, S.: Wolf search algorithm with ephemeral memory. In: Seventh International Conference on Digital Information Management (ICDIM 2012), pp. 165–172. IEEE (2012)
Emami, H., Derakhshan, F.: Election algorithm: a new socio-politically inspired strategy. AI Commun. 28(3), 591–603 (2015)
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)
Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–239 (2017)
Kumar, M., Kulkarni, A.J., Satapathy, S.C.: Socio evolution & learning optimization algorithm: a socio-inspired optimization methodology. Futur. Gener. Comput. Syst. 81, 252–272 (2018)
Saremi, S., Mirjalili, S., Lewis, A.: Grasshopper optimization algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017)
Arora, S., Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23, 715–734 (2019)
Jain, M., Singh, V., Rani, A.: A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol. Comput. 44, 148–175 (2019)
Nematollahi, A.F., Rahiminejad, A., Vahidi, B.: A novel meta-heuristic optimization method based on golden ratio in nature. Soft. Comput. 24, 1117–1151 (2020)
Xue, J., Shen, B.: A novel swarm intelligence optimization approach: sparrow search algorithm. Syst. Sci. Control Eng. 8(1), 22–34 (2020)
Hopfield, J.J., Tank, D.W.: “Neural” computation of decisions in optimization problems. Biol. Cybern. 52(3), 141–152 (1985)
Yoshua, B., Andrea, L., Antoine, P.: Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)
Kim, M., Park, J., Park, J.: Sym-nco: leveraging symmetricity for neural combinatorial optimization. arXiv preprint arXiv:2205.13209 (2022)
Ouyang, W., Wang, Y., Weng, P., Han, S.: Generalization in deep RL for TSP problems via equivariance and local search. arXiv preprint arXiv:2110.03595 (2021)
Xu, Y., Fang, M., Chen, L., Du, Y., Xu, G., Zhang, C.: Shared dynamics learning for large-scale traveling salesman problem. Adv. Eng. Inform. 56, 102005 (2023)
Fei, T., Wu, X., Zhang, L., Zhang, Y., Chen, L.: Research on improved ant colony optimization for the traveling salesman problem. Math. Biosci. Eng. 19(8), 8152–8186 (2022)
Joshi, C.K., Laurent, T., Bresson, X.: On learning paradigms for the traveling salesman problem. arXiv preprint arXiv:1910.07210 (2019)
Prates, M., Avelar, P.H., Lemos, H., Lamb, L.C., Vardi, M.Y.: Learning to solve NP-complete problems: a graph neural network for decision TSP. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 4731–4738 (2019)
Kim, M., Jiwoo, S.O.N., Kim, H., Park, J.: Scale-conditioned adaptation for large scale combinatorial optimization. In: NeurIPS 2022 Workshop on Distribution Shifts: Connecting Methods and Applications (2022)
Schuetz, M.J., Brubaker, J.K., Katzgraber, H.G.: Combinatorial optimization with physics-inspired graph neural networks. Nat. Mach. Intell. 4(4), 367–377 (2022)
Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems!. arXiv preprint arXiv:1803.08475 (2018)
Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.-M.: Learning heuristics for the TSP by policy gradient. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 170–181. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_12
Cappart, Q., Moisan, T., Rousseau, L.M., et al.: Combining reinforcement learning and constraint programming for combinatorial optimization. arXiv:2006.01610 (2018)
Bresson, X., Laurent, T.: The transformer network for the traveling salesman problem. arXiv preprint arXiv:2103.03012 (2021)
Gutiérrez, O., Zamora, E., Menchaca, R.: Graph representation for learning the traveling salesman problem. In: Roman-Rangel, E., Kuri-Morales, Á.F., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, José Arturo. (eds.) MCPR 2021. LNCS, vol. 12725, pp. 153–162. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77004-4_15
Zheng, J., He, K., Zhou, J., Jin, Y., Li, C.M.: Combining reinforcement learning with Lin-Kernighan-Helsgaun algorithm for the traveling salesman problem. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, vol. 14, pp. 12445–12452 (2021)
Fu, Z. H., Qiu, K. B., Zha, H.: Generalize a small pre-trained model to arbitrarily large TSP instances. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 8, pp. 7474–7482 (2021)
Fu, C., et al.: A learning approach for multi-agent travelling problem with dynamic service requirement in mobile IoT. Comput. Electr. Eng. 104, 108397 (2022)
Ma, H., Tu, S., Xu, L.: IA-CL: a deep bidirectional competitive learning method for traveling salesman problem. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) ICONIP 2022, Part I. LNCS, vol. 13623, pp. 525–536. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30105-6_44
Gaile, E., Draguns, A., Ozoliņš, E., Freivalds, K.: Unsupervised training for neural TSP solver. In: Simos, D.E., Rasskazova, V.A., Archetti, F., Kotsireas, I.S., Pardalos, P.M. (eds.) LION 2022. LNCS, vol. 13621, pp. 334–346. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24866-5_25
Sultana, N., Chan, J., Sarwar, T., Qin, A.K.: Learning to optimise general TSP instances. Int. J. Mach. Learn. Cybern. 13(8), 2213–2228 (2022)
Jin, Y., et al.: PointerFormer: deep reinforced multi-pointer transformer for the traveling salesman problem. arXiv preprint arXiv:2304.09407 (2023)
Wang, Y., Chen, Z., Yang, X., Wu, Z.: Deep reinforcement learning combined with graph attention model to solve TSP. J. Nanjing Univ. (Nat. Sci.) 58(3), 420–429 (2022)
Zhang, S., Guo, G.: A review of the multi-traveling salesman model and its applications. Comput. Sci. Explor. 16(7), 1516 (2022)
Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its applications. Comput. Sci. Rev. 40, 100379 (2021)
Wang, Y., Chen, Z., Wu, Z., Gao, Y.: Review of reinforcement learning for combinatorial optimization problem. J. Front. Comput. Sci. Technol. 16(2), 261–279 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yang, L., Wang, X., He, Z., Wang, S., Lin, J. (2024). Review of Traveling Salesman Problem Solution Methods. In: Pan, L., Wang, Y., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2023. Communications in Computer and Information Science, vol 2062. Springer, Singapore. https://doi.org/10.1007/978-981-97-2275-4_1
Download citation
DOI: https://doi.org/10.1007/978-981-97-2275-4_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-2274-7
Online ISBN: 978-981-97-2275-4
eBook Packages: Computer ScienceComputer Science (R0)