Skip to main content

Review of Traveling Salesman Problem Solution Methods

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2023)

Abstract

The Traveling Salesman Problem (TSP) is a key focus in the fields of computer science and operations research, widely applied in areas such as data collection, search and rescue, robot task allocation and scheduling, etc. This paper, by reviewing recent literature, first introduces the definition and mathematical model of the TSP, followed by an exposition of the concepts of classical TSP. Subsequently, an analysis of solving algorithms for the classical Traveling Salesman Problem is conducted, categorizing them into exact algorithms, heuristic algorithms, and learning-based algorithms. The paper then provides an assessment of the advantages and disadvantages associated with these three categories of algorithms, accompanied by an elaborate overview of the research advancements made in recent years. Future research on TSP will focus on exploring undeveloped algorithms and integrating stable ones to address larger-scale problems, enhance solution quality, avoid local optima, and improve solution efficiency. Breakthroughs are anticipated in the application of learning-based methods for solving the Traveling Salesman Problem (TSP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)

    Article  Google Scholar 

  2. Xu, S., Panwar, S.S., Kodialam, M., Lakshman, T.V.: Deep neural network approximated dynamic programming for combinatorial optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 1684–1691 (2020)

    Google Scholar 

  3. Lawler, E.L., Wood, D.E.: Branch-and-bound methods: a survey. Oper. Res. 14(4), 699–719 (1966)

    Article  MathSciNet  Google Scholar 

  4. Zhang, W., Sauppe, J.J., Jacobson, S.H.: Results for the close-enough traveling salesman problem with a branch-and-bound algorithm. Comput. Optim. Appl. 85(2), 369–407 (2023)

    Article  MathSciNet  Google Scholar 

  5. Donog, C.: A relaxation algorithm for solving the traveling salesman problem. Shandong Sci. 32(4), 74–79 (2019)

    Google Scholar 

  6. Weise, T., Jiang, Y., Qi, Q., Liu, W.: A branch-and-bound-based crossover operator for the traveling salesman problem. Int. J. Cogn. Inform. Nat. Intell. (IJCINI) 13(3), 1–18 (2019)

    Article  Google Scholar 

  7. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  8. Toathom, T., Champrasert, P.: The complete subtour order crossover in genetic algorithms for traveling salesman problem solving. In: 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), pp. 904–907. IEEE (2022)

    Google Scholar 

  9. Zhang, P., Wang, J., Tian, Z., Sun, S., Li, J., Yang, J.: A genetic algorithm with jumping gene and heuristic operators for traveling salesman problem. Appl. Soft Comput. 127, 109339 (2022)

    Article  Google Scholar 

  10. Xu, J., Han, F., Liu, Q., Xue, X.: Bioinformation heuristic genetic algorithm for solving TSP. J. Syst. Simul. 34(8), 1811–1819 (2022)

    Google Scholar 

  11. Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano (1992)

    Google Scholar 

  12. Yang, K., You, X., Liu, S., Pan, H.: A novel ant colony optimization based on game for traveling salesman problem. Appl. Intell. 50, 4529–4542 (2020)

    Article  Google Scholar 

  13. Stodola, P., Michenka, K., Nohel, J., Rybanský, M.: Hybrid algorithm based on ant colony optimization and simulated annealing applied to the dynamic traveling salesman problem. Entropy 22(8), 884 (2020)

    Article  MathSciNet  Google Scholar 

  14. Skinderowicz, R.: Improving ant colony optimization efficiency for solving large tsp instances. Appl. Soft Comput. 120, 108653 (2022)

    Article  Google Scholar 

  15. Li, W., Wang, C., Huang, Y., Cheung, Y.M.: Heuristic smoothing ant colony optimization with differential information for the traveling salesman problem. Appl. Soft Comput. 133, 109943 (2023)

    Article  Google Scholar 

  16. Soh, M., Tsofack, B.N., Djamegni, C.T.: A hybrid algorithm based on multi-colony ant optimization and lin-kernighan for solving the traveling salesman problem. Rev. Afr. Recherche Inform. Math. Appl. 35 (2022)

    Google Scholar 

  17. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)

    Article  Google Scholar 

  18. Tang, A., Han, T., Xu, D., Xie, L.: Chaotic elite Harris’ hawk optimization algorithm. Computer Applications 41(8), 2265–2272 (2021)

    Google Scholar 

  19. Gharehchopogh, F.S., Abdollahzadeh, B.: An efficient Harris hawk optimization algorithm for solving the travelling salesman problem. Clust. Comput. 25(3), 1981–2005 (2022)

    Article  Google Scholar 

  20. Chen, H., Heidari, A.A., Chen, H., Wang, M., Pan, Z., Gandomi, A.H.: Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies. Futur. Gener. Comput. Syst. 111, 175–198 (2020)

    Article  Google Scholar 

  21. Hussien, A.G., Amin, M.: A self-adaptive harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection. Int. J. Mach. Learn. Cybern. 1–28 (2022)

    Google Scholar 

  22. Basturk, B.: An artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE Swarm Intelligence Symposium, Indianapolis, USA, vol. 2006, p. 12 (2006)

    Google Scholar 

  23. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspir. Comput. 2(2), 78–84 (2010)

    Article  Google Scholar 

  24. Yang, X. S., Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009)

    Google Scholar 

  25. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)

    Article  Google Scholar 

  26. Tang, R., Fong, S., Yang, X. S., Deb, S.: Wolf search algorithm with ephemeral memory. In: Seventh International Conference on Digital Information Management (ICDIM 2012), pp. 165–172. IEEE (2012)

    Google Scholar 

  27. Emami, H., Derakhshan, F.: Election algorithm: a new socio-politically inspired strategy. AI Commun. 28(3), 591–603 (2015)

    Article  MathSciNet  Google Scholar 

  28. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  29. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  30. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)

    Article  Google Scholar 

  31. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–239 (2017)

    Article  Google Scholar 

  32. Kumar, M., Kulkarni, A.J., Satapathy, S.C.: Socio evolution & learning optimization algorithm: a socio-inspired optimization methodology. Futur. Gener. Comput. Syst. 81, 252–272 (2018)

    Article  Google Scholar 

  33. Saremi, S., Mirjalili, S., Lewis, A.: Grasshopper optimization algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017)

    Article  Google Scholar 

  34. Arora, S., Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23, 715–734 (2019)

    Article  Google Scholar 

  35. Jain, M., Singh, V., Rani, A.: A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol. Comput. 44, 148–175 (2019)

    Article  Google Scholar 

  36. Nematollahi, A.F., Rahiminejad, A., Vahidi, B.: A novel meta-heuristic optimization method based on golden ratio in nature. Soft. Comput. 24, 1117–1151 (2020)

    Article  Google Scholar 

  37. Xue, J., Shen, B.: A novel swarm intelligence optimization approach: sparrow search algorithm. Syst. Sci. Control Eng. 8(1), 22–34 (2020)

    Article  Google Scholar 

  38. Hopfield, J.J., Tank, D.W.: “Neural” computation of decisions in optimization problems. Biol. Cybern. 52(3), 141–152 (1985)

    Article  Google Scholar 

  39. Yoshua, B., Andrea, L., Antoine, P.: Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

    Article  MathSciNet  Google Scholar 

  40. Kim, M., Park, J., Park, J.: Sym-nco: leveraging symmetricity for neural combinatorial optimization. arXiv preprint arXiv:2205.13209 (2022)

  41. Ouyang, W., Wang, Y., Weng, P., Han, S.: Generalization in deep RL for TSP problems via equivariance and local search. arXiv preprint arXiv:2110.03595 (2021)

  42. Xu, Y., Fang, M., Chen, L., Du, Y., Xu, G., Zhang, C.: Shared dynamics learning for large-scale traveling salesman problem. Adv. Eng. Inform. 56, 102005 (2023)

    Article  Google Scholar 

  43. Fei, T., Wu, X., Zhang, L., Zhang, Y., Chen, L.: Research on improved ant colony optimization for the traveling salesman problem. Math. Biosci. Eng. 19(8), 8152–8186 (2022)

    Article  Google Scholar 

  44. Joshi, C.K., Laurent, T., Bresson, X.: On learning paradigms for the traveling salesman problem. arXiv preprint arXiv:1910.07210 (2019)

  45. Prates, M., Avelar, P.H., Lemos, H., Lamb, L.C., Vardi, M.Y.: Learning to solve NP-complete problems: a graph neural network for decision TSP. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 4731–4738 (2019)

    Google Scholar 

  46. Kim, M., Jiwoo, S.O.N., Kim, H., Park, J.: Scale-conditioned adaptation for large scale combinatorial optimization. In: NeurIPS 2022 Workshop on Distribution Shifts: Connecting Methods and Applications (2022)

    Google Scholar 

  47. Schuetz, M.J., Brubaker, J.K., Katzgraber, H.G.: Combinatorial optimization with physics-inspired graph neural networks. Nat. Mach. Intell. 4(4), 367–377 (2022)

    Article  Google Scholar 

  48. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems!. arXiv preprint arXiv:1803.08475 (2018)

  49. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.-M.: Learning heuristics for the TSP by policy gradient. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 170–181. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_12

    Chapter  Google Scholar 

  50. Cappart, Q., Moisan, T., Rousseau, L.M., et al.: Combining reinforcement learning and constraint programming for combinatorial optimization. arXiv:2006.01610 (2018)

  51. Bresson, X., Laurent, T.: The transformer network for the traveling salesman problem. arXiv preprint arXiv:2103.03012 (2021)

  52. Gutiérrez, O., Zamora, E., Menchaca, R.: Graph representation for learning the traveling salesman problem. In: Roman-Rangel, E., Kuri-Morales, Á.F., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, José Arturo. (eds.) MCPR 2021. LNCS, vol. 12725, pp. 153–162. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77004-4_15

    Chapter  Google Scholar 

  53. Zheng, J., He, K., Zhou, J., Jin, Y., Li, C.M.: Combining reinforcement learning with Lin-Kernighan-Helsgaun algorithm for the traveling salesman problem. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, vol. 14, pp. 12445–12452 (2021)

    Google Scholar 

  54. Fu, Z. H., Qiu, K. B., Zha, H.: Generalize a small pre-trained model to arbitrarily large TSP instances. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 8, pp. 7474–7482 (2021)

    Google Scholar 

  55. Fu, C., et al.: A learning approach for multi-agent travelling problem with dynamic service requirement in mobile IoT. Comput. Electr. Eng. 104, 108397 (2022)

    Article  Google Scholar 

  56. Ma, H., Tu, S., Xu, L.: IA-CL: a deep bidirectional competitive learning method for traveling salesman problem. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) ICONIP 2022, Part I. LNCS, vol. 13623, pp. 525–536. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30105-6_44

    Chapter  Google Scholar 

  57. Gaile, E., Draguns, A., Ozoliņš, E., Freivalds, K.: Unsupervised training for neural TSP solver. In: Simos, D.E., Rasskazova, V.A., Archetti, F., Kotsireas, I.S., Pardalos, P.M. (eds.) LION 2022. LNCS, vol. 13621, pp. 334–346. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24866-5_25

    Chapter  Google Scholar 

  58. Sultana, N., Chan, J., Sarwar, T., Qin, A.K.: Learning to optimise general TSP instances. Int. J. Mach. Learn. Cybern. 13(8), 2213–2228 (2022)

    Article  Google Scholar 

  59. Jin, Y., et al.: PointerFormer: deep reinforced multi-pointer transformer for the traveling salesman problem. arXiv preprint arXiv:2304.09407 (2023)

  60. Wang, Y., Chen, Z., Yang, X., Wu, Z.: Deep reinforcement learning combined with graph attention model to solve TSP. J. Nanjing Univ. (Nat. Sci.) 58(3), 420–429 (2022)

    Google Scholar 

  61. Zhang, S., Guo, G.: A review of the multi-traveling salesman model and its applications. Comput. Sci. Explor. 16(7), 1516 (2022)

    Google Scholar 

  62. Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its applications. Comput. Sci. Rev. 40, 100379 (2021)

    Article  MathSciNet  Google Scholar 

  63. Wang, Y., Chen, Z., Wu, Z., Gao, Y.: Review of reinforcement learning for combinatorial optimization problem. J. Front. Comput. Sci. Technol. 16(2), 261–279 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, L., Wang, X., He, Z., Wang, S., Lin, J. (2024). Review of Traveling Salesman Problem Solution Methods. In: Pan, L., Wang, Y., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2023. Communications in Computer and Information Science, vol 2062. Springer, Singapore. https://doi.org/10.1007/978-981-97-2275-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2275-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2274-7

  • Online ISBN: 978-981-97-2275-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics