Skip to main content

Application and Prospect of Knowledge Graph in Unmanned Vehicle Field

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2062))

  • 32 Accesses

Abstract

With the rapid development of unmanned vehicle technology, unmanned vehicle plays an increasingly important role in related fields, which is of great significance to the future development of intelligent transportation. In order to break through the bottleneck of the intelligent degree of existing unmanned vehicles, unmanned vehicle driving technology based on knowledge graph has become one of the development trends. Firstly, this paper gives a brief overview of the decision-making process of unmanned vehicles, and introduces the basic principles and related concepts of unmanned vehicle technology based on knowledge graph. Then the application of knowledge graph in intelligent decision-making of unmanned vehicle is introduced, including target recognition, semantic segmentation, target trajectory prediction and scene understanding. Then an automatic driving decision system based on knowledge graph is proposed. Finally, the future development of intelligent decision-making of unmanned vehicles based on knowledge graph is prospected, and various possibilities of its future development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qi, G.L., Gao, H., Wu, T.X.: Research progress of knowledge graph. Inf. Eng. 3(1), 4–25 (2017)

    Google Scholar 

  2. Zhao, L., Ichise, R., Mita, S., Sasaki, Y.: Core ontologies for safe autonomous driving. In: The 14th International Semantic Web Conference (2015)

    Google Scholar 

  3. Klotz, B., Troncy, R., Wilms, D., Bonnet, C.: VSSo: a vehicle signal and attribute ontology. In: 9th International Semantic Sensor Networks Workshop (2018)

    Google Scholar 

  4. Sarwar, S., et al.: Context aware ontology-based hybrid intelligent framework for vehicle driver categorization. Trans. Emerg. Telecommun. Technol. 33(8), e3729 (2022)

    Article  Google Scholar 

  5. Kannan, S., Thangavelu, A., Kalivaradhan, R.B.: An intelligent driver assistance system (I-DAS) for vehicle safety modelling using ontology approach. Int. J. UbiComp 1(3), 15–29 (2010)

    Article  Google Scholar 

  6. Feld, M., Müller, C.: The automotive ontology: managing knowledge inside the vehicle and sharing it between cars. In: Proceedings of the 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 79–86 (2011)

    Google Scholar 

  7. Suryawanshi, Y., Qiu, H., Ayara, A., Glimm, B.: An ontological model for map data in automotive systems. In: 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 140–147. IEEE (2019)

    Google Scholar 

  8. Henson, C., Schmid, S., Tran, A.T., Karatzoglou, A.: Using a knowledge graph of scenes to enable search of autonomous driving data. In: ISWC, pp. 313–314 (2019)

    Google Scholar 

  9. Pollard, E., Morignot, P., Nashashibi, F.: An ontology-based model to determine the automation level of an automated vehicle for co-driving. In: Proceedings of the 16th International Conference on Information Fusion, pp. 596–603. IEEE (2013)

    Google Scholar 

  10. Westhofen, L., Neurohr, C., Butz, M., Scholtes, M., Schuldes, M.: Using ontologies for the formalization and recognition of criticality for automated driving. IEEE Open J. Intell. Transp. Syst. 3, 519–538 (2022)

    Article  Google Scholar 

  11. Ulbrich, S., Nothdurft, T., Maurer, M., Hecker, P.: Graph-based context representation, environment modeling and information aggregation for automated driving. In: IEEE Intelligent Vehicles Symposium Proceedings, pp. 541–547. IEEE (2014)

    Google Scholar 

  12. Xie, D. P., Chang, Q.: Summary of relation extraction. Appl. Res. Comput. 37(07), 1921–1924+1930 (2020)

    Google Scholar 

  13. Xu, Q.T., Hong, Y., Pan, Y.C., et al.: Summary of attribute extraction research. J. Softw. 34(02), 690–711 (2023)

    Google Scholar 

  14. Halilaj, L., Luettin, J., Henson, C., Monka, S.: Knowledge graphs for automated driving. In: 2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 98–105. IEEE (2022)

    Google Scholar 

  15. Kim, J.E., Henson, C., Huang, K., Tran, T.A., Lin, W.-Y.: Accelerating road sign ground truth construction with knowledge graph and machine learning. In: Arai, K. (ed.) Intelligent Computing. LNNS, vol. 284, pp. 325–340. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80126-7_25

    Chapter  Google Scholar 

  16. Monka, S., Halilaj, L., Schmid, S., Rettinger, A.: Learning visual models using a knowledge graph as a trainer. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 357–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4_21

    Chapter  Google Scholar 

  17. Lu, P., Xu, S., Peng, H.: Graph-embedded lane detection. IEEE Trans. Image Process. 30, 2977–2988 (2021)

    Article  MathSciNet  Google Scholar 

  18. Kunze, L., Bruls, T., Suleymanov, T., Newman, P.: Reading between the lanes: road layout reconstruction from partially segmented scenes. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 401–408. IEEE (2018)

    Google Scholar 

  19. Bordes, J.B., Davoine, F., Xu, P., Denoeux, T.: Evidential grammars: a compositional approach for scene understanding. Application to multimodal street data. Appl. Soft Comput. 61, 1173–1185 (2017)

    Article  Google Scholar 

  20. Wickramarachchi, R., Henson, C., Sheth, A.: Knowledge-infused learning for entity prediction in driving scenes. Front. Big Data 4, 759110 (2021)

    Article  Google Scholar 

  21. Halilaj, L., Dindorkar, I., Lüttin, J., Rothermel, S.: A knowledge graph-based approach for situation comprehension in driving scenarios. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 699–716. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_42

    Chapter  Google Scholar 

  22. Fang, F., Yamaguchi, S., Khiat, A.: Ontology-based reasoning approach for long-term behavior prediction of road users. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 2068–2073. IEEE (2019)

    Google Scholar 

  23. Li, X., Ying, X., Chuah, M.C.: GRIP: graph-based interaction-aware trajectory prediction. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3960–3966. IEEE (2019)

    Google Scholar 

  24. Zipflfl, M., et al.: Relation-based motion prediction using traffic scene graphs. In: 2022 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 825–831. IEEE (2022)

    Google Scholar 

  25. Regele, R.: Using ontology-based traffic models for more efficient decision making of autonomous vehicles. In: International Conference on Autonomic & Autonomous Systems, pp. 94–99. IEEE (2008)

    Google Scholar 

  26. Xiong, Z., Dixit, V. V., Waller, S. T.: The development of an ontology for driving context modelling and reasoning. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 13–18. IEEE (2016)

    Google Scholar 

  27. Huang, L., Liang, H., Yu, B., Li, B., Zhu, H.: Ontology-based driving scene modeling, situation assessment and decision making for autonomous vehicles. In: In 2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pp. 57–62. IEEE (2019)

    Google Scholar 

  28. Dianov, I., Ramirez-Amaro, K., Cheng, G.: Generating compact models for traffic scenarios to estimate driver behavior using semantic reasoning. In: IROS, International Conference on Intelligent Robots and Systems, pp. 69–74 (2015)

    Google Scholar 

  29. Hovi, J., Ichise, R.: Feasibility study: rule generation for ontology-based decision-making systems. In: Wang, X., Lisi, F.A., Xiao, G., Botoeva, E. (eds.) JIST 2019. CCIS, vol. 1157, pp. 88–99. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3412-6_9

    Chapter  Google Scholar 

  30. Morignot, P., Nashashibi, F.: An ontology-based approach to relax traffic regulation for autonomous vehicle assistance. arXiv preprint arXiv:1212.0768 (2012)

  31. Zheng, S., Mai, S., Sun, Y., Hu, H., Yang, Y.: Subgraph-aware few-shot inductive link prediction via meta-learning. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  32. Huang, Q., Ren, H., Leskovec, J.: Few-shot relational reasoning via connection subgraph pretraining. Adv. Neural. Inf. Process. Syst. 35, 6397–6409 (2022)

    Google Scholar 

  33. Hong, Z.N., Jin, X.L., Chen, J.Y., et al.: A summary of the research on interpretable reasoning of knowledge graph. J. Softw. 33(12), 4644–4667 (2022)

    Google Scholar 

  34. Oltramari, A., Francis, J., Henson, C., Ma, K., Wickramarachchi, R.: Neuro-symbolic architectures for context understanding. arXiv preprint arXiv:2003.04707 (2020)

  35. Yan, C., Zhao, F., Jin, H.: ExKGR: explainable multi-hop reasoning for evolving knowledge graph. In: Bhattacharya, A., et al. (eds.) DASFAA 2022. LNCS, vol. 13245, pp. 153–161. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-00123-9_11

    Chapter  Google Scholar 

Download references

Acknowledgements

This paper was funded by the National Natural Science Foundation of China (72101033 and 71831001), the Beijing Key Laboratory of Intelligent Logistics Systems (BZ0211), the Canal Plan-Youth Top-Notch Talent Project of Beijing Tongzhou District (YHQN2017014), the Scheduling Model and Method for Large-scale Logistics Robot E-commerce Picking System based on Deep Reinforcement Learning (KZ202210037046), the Fundamental Research Funds for the Central Universities No.2015JBM125 and the Beijing Intelligent Logistics System Collaborative Innovation Center (BILSCIC-2018KF-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-tao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, Yt., Li, Jt. (2024). Application and Prospect of Knowledge Graph in Unmanned Vehicle Field. In: Pan, L., Wang, Y., Lin, J. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2023. Communications in Computer and Information Science, vol 2062. Springer, Singapore. https://doi.org/10.1007/978-981-97-2275-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2275-4_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2274-7

  • Online ISBN: 978-981-97-2275-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics