Abstract
In this paper, we explore two robust models for the k-median and k-means problems: the outlier-version (k-MedO/k-MeaO) and the penalty-version (k-MedP/k-MeaP), enabling the marking and elimination of certain points as outliers. In k-MedO/k-MeaO, the count of outliers is restricted by a specified integer, while in k-MedP/k-MeaP, there’s no explicit limit on outlier quantity, yet each outlier incurs a penalty cost.
We introduce a novel approach to evaluate the approximation ratio of local search algorithms for these problems. This involves an adapted clustering method that captures pertinent information about outliers within both local and global optimal solutions. For k-MeaP, we enhance the best-known approximation ratio derived from local search, elevating it from \(25+\varepsilon \) to \(9+\varepsilon \). The best-known approximation ratio for k-MedP is also obtained.
Regarding k-MedO/k-MeaO, only two bi-criteria approximation algorithms based on local search exist. One violates the outlier constraint (limiting outlier count), while the other breaches the cardinality constraint (restricting the number of clusters). We focus on the former algorithm, enhancing its approximation ratios from \(17+\varepsilon \) to \(3+\varepsilon \) for k-MedO and from \(274+\varepsilon \) to \(9+\varepsilon \) for k-MeaO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k-means and euclidean k-median by primal-dual algorithms. In: Proceedings of the 58th Annual Symposium on Foundations of Computer Science, pp. 61–72 (2017)
Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean \(k\)-medians and related problems. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 106–113 (1998)
Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)
Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for \(k\)-median, and positive correlation in budgeted optimization, pp. 737–756 (2014)
Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)
Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 642–651. Society for Industrial and Applied Mathematics (2001)
Charikar, M., Li, S.: A dependent LP-rounding approach for the k-median problem. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) Automata, Languages, and Programming. ICALP 2012, vol. 7391, pp. 194C205. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-7_17
Chen, K.: A constant factor approximation algorithm for k-median clustering with outliers. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 826–835 (2008)
Cohen-Addad, V., Gupta, A., Hu, L., et al.: An improved local search algorithm for k-median. In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied Mathematics, pp. 1556–1612 (2022)
Cohen-Addad, V., Karthik, C.: Inapproximability of clustering in \(l_p\) metrics. In: Proceedings of the 60th Annual Symposium on Foundations of Computer Science, pp. 519–539 (2019)
Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation schemes for k-means and k-median in Euclidean and minor-free metrics. SIAM J. Comput. 48(2), 644–667 (2019)
Feng, Q., Zhang, Z., Shi, F., Wang, J.: An improved approximation algorithm for the \(k\)-means problem with penalties. In: Chen, Y., Deng, X., Lu, M. (eds.) Frontiers in Algorithmics. FAW 2019. FAW 2019, vol. 11458, pp. 170–181. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18126-0_15
Friggstad, Z., Khodamoradi, K., Rezapour, M., Salavatipour, M.R.: Approximation schemes for clustering with outliers. ACM Trans. Algorithms 15(2), 1–26 (2019)
Friggstad, Z., Rezapour, M., Salavatipour, M.R.: Local search yields a PTAS for k-means in doubling metrics. SIAM J. Comput. 48(2), 452–480 (2019)
Gupta, S., Kumar, R., Lu, K., Moseley, B., Vassilvitskii, S.: Local search methods for k-means with outliers. In: Proceedings of the 43rd International Conference on Very Large Data Bases, vol. 10, no. (7), p. 757–768 (2017)
Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63(4), 795–814 (2012)
Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM 50(6), 795–824 (2003)
Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and \(k\)-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM 48(2), 274–296 (2001)
Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for k-means clustering. Comput. Geom. 28(2–3), 89–112 (2004)
Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k-median and \(k\)-means with outliers via iterative rounding. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 646–659 (2018)
Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. SIAM J. Comput. 45(2), 530–547 (2016)
Makarychev, K., Makarychev, Y., Sviridenko, M., Ward, J.: A bi-criteria approximation algorithm for k-means. In: Proceedings of the 19th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), and the 20th International Workshop on Randomization and Computation (RANDOM), pp. 14:1–14:20 (2016)
Matousek, J.: On approximate geometric k-clustering. Discrete Comput. Geom. 24(1), 61–84 (2000)
Zhang, D., Hao, C., Wu, C., Xu, D., Zhang, Z.: Local search approximation algorithms for the k-means problem with penalties. J. Comb. Optim. 37(2), 439–453 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wu, C., Möhring, R.H., Wang, Y., Xu, D., Zhang, D. (2024). Approximation Algorithms for Robust Clustering Problems Using Local Search Techniques. In: Chen, X., Li, B. (eds) Theory and Applications of Models of Computation. TAMC 2024. Lecture Notes in Computer Science, vol 14637. Springer, Singapore. https://doi.org/10.1007/978-981-97-2340-9_17
Download citation
DOI: https://doi.org/10.1007/978-981-97-2340-9_17
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-2339-3
Online ISBN: 978-981-97-2340-9
eBook Packages: Computer ScienceComputer Science (R0)