Skip to main content

An Improved Approximation Algorithm for Metric Triangle Packing

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2024)

Abstract

Given an edge-weighted metric complete graph with n vertices, the maximum weight metric triangle packing problem is to find a set of n/3 vertex-disjoint triangles with the total weight of all triangles in the packing maximized. Several simple methods can lead to a 2/3-approximation ratio. However, this barrier is not easy to break. Chen et al. proposed a randomized approximation algorithm with an expected ratio of \((0.66768-\varepsilon )\) for any constant \(\varepsilon >0\). In this paper, we improve the approximation ratio to \((0.66835-\varepsilon )\). Furthermore, we can derandomize our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arkin, E.M., Hassin, R.: On local search for weighted \(k\)-set packing. Math. Oper. Res. 23(3), 640–648 (1998)

    Article  MathSciNet  Google Scholar 

  2. Bar-Noy, A., Peleg, D., Rabanca, G., Vigan, I.: Improved approximation algorithms for weighted 2-path partitions. Discrete Appl. Math. 239, 15–37 (2018)

    Article  MathSciNet  Google Scholar 

  3. Berman, P.: A \(d/2\) approximation for maximum weight independent set in \(d\)-claw free graphs. Nord. J. Comput. 7(3), 178–184 (2000)

    MathSciNet  Google Scholar 

  4. Chen, Y., Chen, Z., Lin, G., Wang, L., Zhang, A.: A randomized approximation algorithm for metric triangle packing. J. Comb. Optim. 41(1), 12–27 (2021)

    Article  MathSciNet  Google Scholar 

  5. Chen, Z., Tanahashi, R., Wang, L.: An improved randomized approximation algorithm for maximum triangle packing. Discrete Appl. Math. 157(7), 1640–1646 (2009)

    Article  MathSciNet  Google Scholar 

  6. Chen, Z., Tanahashi, R., Wang, L.: Erratum to “an improved randomized approximation algorithm for maximum triangle packing" [Discrete Appl. Math. 157 (2009) 1640–1646]. Discrete Appl. Math. 158(9), 1045–1047 (2010)

    Google Scholar 

  7. Chlebík, M., Chlebíková, J.: Approximation hardness for small occurrence instances of NP-hard problems. In: CIAC 2003, vol. 2653, pp. 152–164 (2003)

    Google Scholar 

  8. Cygan, M.: Improved approximation for 3-dimensional matching via bounded pathwidth local search. In: FOCS 2013, pp. 509–518. IEEE Computer Society (2013)

    Google Scholar 

  9. Fürer, M., Yu, H.: Approximating the \(k\)-set packing problem by local improvements. In: Fouilhoux, P., Gouveia, L., Mahjoub, A., Paschos, V. (eds.) ISCO 2014. LNCS, vol. 8596, pp. 408–420. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09174-7_35

    Chapter  Google Scholar 

  10. Gabow, H.N.: Implementation of algorithms for maximum matching on nonbipartite graphs. Ph.D. thesis, Stanford University (1974)

    Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)

    Google Scholar 

  12. Guruswami, V., Rangan, C.P., Chang, M., Chang, G.J., Wong, C.K.: The vertex-disjoint triangles problem. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 26–37. Springer, Heidelberg (1998). https://doi.org/10.1007/10692760_3

    Chapter  Google Scholar 

  13. Halldórsson, M.M.: Approximating discrete collections via local improvements. In: SODA 1995, pp. 160–169. ACM/SIAM (1995)

    Google Scholar 

  14. Hartvigsen, D.: Extensions of matching theory. Ph.D. thesis, Carnegie-Mellon University (1984)

    Google Scholar 

  15. Hassin, R., Rubinstein, S.: An approximation algorithm for maximum triangle packing. Discrete Appl. Math. 154(6), 971–979 (2006)

    Article  MathSciNet  Google Scholar 

  16. Hassin, R., Rubinstein, S.: Erratum to “an approximation algorithm for maximum triangle packing’’: [Discrete Applied Mathematics 154 (2006) 971–979]. Discrete Appl. Math. 154(18), 2620 (2006)

    Article  MathSciNet  Google Scholar 

  17. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum dispersion. Oper. Res. Lett. 21(3), 133–137 (1997)

    Article  MathSciNet  Google Scholar 

  18. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discrete Math. 2(1), 68–72 (1989)

    Article  MathSciNet  Google Scholar 

  19. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf. Process. Lett. 37(1), 27–35 (1991)

    Article  MathSciNet  Google Scholar 

  20. Kirkpatrick, D.G., Hell, P.: On the completeness of a generalized matching problem. In: STOC 1978, pp. 240–245. ACM (1978)

    Google Scholar 

  21. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston (1976)

    Google Scholar 

  22. Li, S., Yu, W.: Approximation algorithms for the maximum-weight cycle/path packing problems. Asia Pac. J. Oper. Res. 40(4), 2340003:1–2340003:16 (2023)

    Google Scholar 

  23. Manic, G., Wakabayashi, Y.: Packing triangles in low degree graphs and indifference graphs. Discrete Math. 308(8), 1455–1471 (2008)

    Article  MathSciNet  Google Scholar 

  24. Neuwohner, M.: An improved approximation algorithm for the maximum weight independent set problem in d-claw free graphs. In: STACS 2021. LIPIcs, vol. 187, pp. 53:1–53:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  25. van Rooij, J.M.M., van Kooten Niekerk, M.E., Bodlaender, H.L.: Partition into triangles on bounded degree graphs. Theory Comput. Syst. 52(4), 687–718 (2013)

    Google Scholar 

  26. Thiery, T., Ward, J.: An improved approximation for maximum weighted \(k\)-set packing. In: SODA 2023, pp. 1138–1162. SIAM (2023)

    Google Scholar 

  27. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  28. Zhao, J., Xiao, M.: An improved approximation algorithm for metric triangle packing. CoRR abs/2402.08216 (2024)

    Google Scholar 

  29. van Zuylen, A.: Deterministic approximation algorithms for the maximum traveling salesman and maximum triangle packing problems. Discrete Appl. Math. 161(13–14), 2142–2157 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China, under grant 62372095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyu Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J., Xiao, M. (2024). An Improved Approximation Algorithm for Metric Triangle Packing. In: Chen, X., Li, B. (eds) Theory and Applications of Models of Computation. TAMC 2024. Lecture Notes in Computer Science, vol 14637. Springer, Singapore. https://doi.org/10.1007/978-981-97-2340-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2340-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2339-3

  • Online ISBN: 978-981-97-2340-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics