Abstract
Given an edge-weighted metric complete graph with n vertices, the maximum weight metric triangle packing problem is to find a set of n/3 vertex-disjoint triangles with the total weight of all triangles in the packing maximized. Several simple methods can lead to a 2/3-approximation ratio. However, this barrier is not easy to break. Chen et al. proposed a randomized approximation algorithm with an expected ratio of \((0.66768-\varepsilon )\) for any constant \(\varepsilon >0\). In this paper, we improve the approximation ratio to \((0.66835-\varepsilon )\). Furthermore, we can derandomize our algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arkin, E.M., Hassin, R.: On local search for weighted \(k\)-set packing. Math. Oper. Res. 23(3), 640–648 (1998)
Bar-Noy, A., Peleg, D., Rabanca, G., Vigan, I.: Improved approximation algorithms for weighted 2-path partitions. Discrete Appl. Math. 239, 15–37 (2018)
Berman, P.: A \(d/2\) approximation for maximum weight independent set in \(d\)-claw free graphs. Nord. J. Comput. 7(3), 178–184 (2000)
Chen, Y., Chen, Z., Lin, G., Wang, L., Zhang, A.: A randomized approximation algorithm for metric triangle packing. J. Comb. Optim. 41(1), 12–27 (2021)
Chen, Z., Tanahashi, R., Wang, L.: An improved randomized approximation algorithm for maximum triangle packing. Discrete Appl. Math. 157(7), 1640–1646 (2009)
Chen, Z., Tanahashi, R., Wang, L.: Erratum to “an improved randomized approximation algorithm for maximum triangle packing" [Discrete Appl. Math. 157 (2009) 1640–1646]. Discrete Appl. Math. 158(9), 1045–1047 (2010)
Chlebík, M., Chlebíková, J.: Approximation hardness for small occurrence instances of NP-hard problems. In: CIAC 2003, vol. 2653, pp. 152–164 (2003)
Cygan, M.: Improved approximation for 3-dimensional matching via bounded pathwidth local search. In: FOCS 2013, pp. 509–518. IEEE Computer Society (2013)
Fürer, M., Yu, H.: Approximating the \(k\)-set packing problem by local improvements. In: Fouilhoux, P., Gouveia, L., Mahjoub, A., Paschos, V. (eds.) ISCO 2014. LNCS, vol. 8596, pp. 408–420. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09174-7_35
Gabow, H.N.: Implementation of algorithms for maximum matching on nonbipartite graphs. Ph.D. thesis, Stanford University (1974)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)
Guruswami, V., Rangan, C.P., Chang, M., Chang, G.J., Wong, C.K.: The vertex-disjoint triangles problem. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 26–37. Springer, Heidelberg (1998). https://doi.org/10.1007/10692760_3
Halldórsson, M.M.: Approximating discrete collections via local improvements. In: SODA 1995, pp. 160–169. ACM/SIAM (1995)
Hartvigsen, D.: Extensions of matching theory. Ph.D. thesis, Carnegie-Mellon University (1984)
Hassin, R., Rubinstein, S.: An approximation algorithm for maximum triangle packing. Discrete Appl. Math. 154(6), 971–979 (2006)
Hassin, R., Rubinstein, S.: Erratum to “an approximation algorithm for maximum triangle packing’’: [Discrete Applied Mathematics 154 (2006) 971–979]. Discrete Appl. Math. 154(18), 2620 (2006)
Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum dispersion. Oper. Res. Lett. 21(3), 133–137 (1997)
Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discrete Math. 2(1), 68–72 (1989)
Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf. Process. Lett. 37(1), 27–35 (1991)
Kirkpatrick, D.G., Hell, P.: On the completeness of a generalized matching problem. In: STOC 1978, pp. 240–245. ACM (1978)
Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston (1976)
Li, S., Yu, W.: Approximation algorithms for the maximum-weight cycle/path packing problems. Asia Pac. J. Oper. Res. 40(4), 2340003:1–2340003:16 (2023)
Manic, G., Wakabayashi, Y.: Packing triangles in low degree graphs and indifference graphs. Discrete Math. 308(8), 1455–1471 (2008)
Neuwohner, M.: An improved approximation algorithm for the maximum weight independent set problem in d-claw free graphs. In: STACS 2021. LIPIcs, vol. 187, pp. 53:1–53:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)
van Rooij, J.M.M., van Kooten Niekerk, M.E., Bodlaender, H.L.: Partition into triangles on bounded degree graphs. Theory Comput. Syst. 52(4), 687–718 (2013)
Thiery, T., Ward, J.: An improved approximation for maximum weighted \(k\)-set packing. In: SODA 2023, pp. 1138–1162. SIAM (2023)
Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)
Zhao, J., Xiao, M.: An improved approximation algorithm for metric triangle packing. CoRR abs/2402.08216 (2024)
van Zuylen, A.: Deterministic approximation algorithms for the maximum traveling salesman and maximum triangle packing problems. Discrete Appl. Math. 161(13–14), 2142–2157 (2013)
Acknowledgments
The work is supported by the National Natural Science Foundation of China, under grant 62372095.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhao, J., Xiao, M. (2024). An Improved Approximation Algorithm for Metric Triangle Packing. In: Chen, X., Li, B. (eds) Theory and Applications of Models of Computation. TAMC 2024. Lecture Notes in Computer Science, vol 14637. Springer, Singapore. https://doi.org/10.1007/978-981-97-2340-9_5
Download citation
DOI: https://doi.org/10.1007/978-981-97-2340-9_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-2339-3
Online ISBN: 978-981-97-2340-9
eBook Packages: Computer ScienceComputer Science (R0)