Skip to main content

An Improved Kernel and Parameterized Algorithm for Almost Induced Matching

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14637))

Included in the following conference series:

Abstract

An induced subgraph is called an induced matching if each vertex is a degree-1 vertex in the subgraph. The Almost Induced Matching problem asks whether we can delete at most k vertices from the input graph such that the remaining graph is an induced matching. This paper studies parameterized algorithms for this problem by taking the size k of the deletion set as the parameter. First, we prove a 6k-vertex kernel for this problem, improving the previous result of 7k. Second, we give an \(O^*(1.6765^k)\)-time and polynomial-space algorithm, improving the previous running-time bound of \(O^*(1.7485^k)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H., Symons, C.T.: Kernelization algorithms for the vertex cover problem: theory and experiments. In: Arge, L., Italiano, G.F., Sedgewick, R. (eds.) Proceedings of the Sixth Workshop on Algorithm Engineering and Experiments and the First Workshop on Analytic Algorithmics and Combinatorics, New Orleans, LA, USA, January 10, 2004, pp. 62–69. SIAM (2004)

    Google Scholar 

  2. Cameron, K.: Induced matchings. Discret. Appl. Math. 24(1–3), 97–102 (1989)

    Article  MathSciNet  Google Scholar 

  3. Chor, B., Fellows, M., Juedes, D.: Linear kernels in linear time, or how to save k colors in \(o(n^2)\) steps. In: Hromkovic, J., Nagl, M., Westfechtel, B. (eds.) Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, vol. 3353, pp. 257–269. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-30559-0_22

    Chapter  Google Scholar 

  4. Duckworth, W., Manlove, D.F., Zito, M.: On the approximability of the maximum induced matching problem. J. Discret. Algorithms 3(1), 79–91 (2005)

    Article  MathSciNet  Google Scholar 

  5. Golumbic, M.C., Laskar, R.C.: Irredundancy in circular arc graphs. Discret. Appl. Math. 44(1–3), 79–89 (1993)

    Article  MathSciNet  Google Scholar 

  6. Golumbic, M.C., Lewenstein, M.: New results on induced matchings. Discret. Appl. Math. 101(1–3), 157–165 (2000)

    Article  MathSciNet  Google Scholar 

  7. Gupta, S., Raman, V., Saurabh, S.: Maximum r-regular induced subgraph problem: fast exponential algorithms and combinatorial bounds. SIAM J. Discret. Math. 26(4), 1758–1780 (2012)

    Article  MathSciNet  Google Scholar 

  8. Hoi, G., Sabili, A.F., Stephan, F.: An exact algorithm for finding maximum induced matching in subcubic graphs (2022). arXiv:2201.03220

  9. Kanj, I., Pelsmajer, M.J., Schaefer, M., Xia, G.: On the induced matching problem. J. Comput. Syst. Sci. 77(6), 1058–1070 (2011)

    Article  MathSciNet  Google Scholar 

  10. Ko, C., Shepherd, F.B.: Bipartite domination and simultaneous matroid covers. SIAM J. Discret. Math. 16(4), 517–523 (2003)

    Article  MathSciNet  Google Scholar 

  11. Kobler, D., Rotics, U.: Finding maximum induced matchings in subclasses of claw-free and P 5-free graphs, and in graphs with matching and induced matching of equal maximum size. Algorithmica 37(4), 327–346 (2003)

    Article  MathSciNet  Google Scholar 

  12. Kratsch, D., Fomin, F.: Exact Exponential Algorithms. Springer, Cham (2010)

    Google Scholar 

  13. Kumar, A., Kumar, M.: Deletion to induced matching (2020). arXiv:2008.09660

  14. Liu, Y., Xiao, M.: An improved kernel and parameterized algorithm for almost induced matching. arXiv preprint: arXiv:2308.14116 (2023)

  15. Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: a parameterized approach. J. Comput. Syst. Sci. 78(1), 179–191 (2012)

    Article  MathSciNet  Google Scholar 

  16. Moser, H., Sikdar, S.: The parameterized complexity of the induced matching problem. Discret. Appl. Math. 157(4), 715–727 (2009)

    Article  MathSciNet  Google Scholar 

  17. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced subgraphs. J. Discret. Algorithms 7(2), 181–190 (2009)

    Article  MathSciNet  Google Scholar 

  18. Stockmeyer, L.J., Vazirani, V.V.: NP-completeness of some generalizations of the maximum matching problem. Inf. Process. Lett. 15(1), 14–19 (1982)

    Article  MathSciNet  Google Scholar 

  19. Xiao, M., Kou, S.: Almost induced matching: linear kernels and parameterized algorithms. In: Heggernes, P. (ed.) Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science(), vol. 9941, pp. 220–232. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-53536-3_19

    Chapter  Google Scholar 

  20. Xiao, M., Kou, S.: Parameterized algorithms and kernels for almost induced matching. Theoret. Comput. Sci. 846, 103–113 (2020)

    Article  MathSciNet  Google Scholar 

  21. Xiao, M., Tan, H.: Exact algorithms for maximum induced matching. Inf. Comput. 256, 196–211 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62372095 and 62172077) and the Sichuan Natural Science Foundation (Grant No. 2023NSFSC0059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyu Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Xiao, M. (2024). An Improved Kernel and Parameterized Algorithm for Almost Induced Matching. In: Chen, X., Li, B. (eds) Theory and Applications of Models of Computation. TAMC 2024. Lecture Notes in Computer Science, vol 14637. Springer, Singapore. https://doi.org/10.1007/978-981-97-2340-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2340-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2339-3

  • Online ISBN: 978-981-97-2340-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics