Skip to main content

DADR: A Denoising Approach for Dense Retrieval Model Training

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

With the development of representation learning techniques, Dense Retrieval (DR) has become a new paradigm to retrieve relevant texts for better ranking performance. Although current DR models have achieved encouraging results, their performance is highly affected by the noise level in training samples. In particular, a large number of examples that were not labeled as positives (which were used as negative samples by default) were found to actually be positive or highly relevant. As such, it is of critical importance to account for the inevitable noises in DR model training. However, little work on dense retrieval has taken the noisy nature into consideration. In this work, we intensely investigate the serious negative impacts of noisy training samples and propose a new denoising approach, i.e., A Denoising Approach based on dynamic weights for Dense Retrieval model training (DADR), which reduces the effects of noise on model performance by assigning diverse weights to the different samples during the training process. We incorporate the proposed DADR approach with three representative kinds of sampling methods and different loss functions. Experimental results on two publicly available retrieval benchmark datasets show that our approach significantly improves the performance of the DR model over normal training.

This work was supported by Hunan Provincial Natural Science Foundation Project (No. 2022JJ30668) and (No. 2022JJ30046).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Unsupervised label noise modeling and loss correction (2019)

    Google Scholar 

  2. Arazo, E., Ortego, D., Albert, P., O’Connor, N., McGuinness, K.: Unsupervised label noise modeling and loss correction. In: International Conference on Machine Learning, pp. 312–321. PMLR (2019)

    Google Scholar 

  3. Brodley, C.E., Friedl, M.A.: Identifying mislabeled training data (1999)

    Google Scholar 

  4. Burges, C.J.C.: From ranknet to lambdarank to lambdamart: an overview (2010)

    Google Scholar 

  5. Chen, Y., Zhou, D., Li, L., Han, J.M.: Multimodal encoders for food-oriented cross-modal retrieval. In: U, L.H., Spaniol, M., Sakurai, Y., Chen, J. (eds.) Web and Big Data. APWeb-WAIM 2021. LNCS, vol. 12859, pp. 253–266. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85899-5_19

  6. Cheng, M., et al.: Vista: vision and scene text aggregation for cross-modal retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5184–5193 (2022)

    Google Scholar 

  7. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Voorhees, E.M.: Overview of the Trec 2019 deep learning track. Text REtrieval Conference (2020)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: North American Chapter of the Association for Computational Linguistics (2018)

    Google Scholar 

  9. Du, M., et al.: Topic-grained text representation-based model for document retrieval. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds.) Artificial Neural Networks and Machine Learning. ICANN 2022. LNCS, vol. 13531, pp. 776–788. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15934-3_64

  10. Gao, L., Dai, Z., Fan, Z., Callan, J.: Complementing lexical retrieval with semantic residual embedding. Cornell University - arXiv (2020)

    Google Scholar 

  11. Gao, Y., et al.: Self-guided learning to denoise for robust recommendation (2022)

    Google Scholar 

  12. Gutmann, M.U., Hyvärinen, A.: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In: International Conference on Artificial Intelligence and Statistics (2010)

    Google Scholar 

  13. Guu, K., Lee, K., Tung, Z., Pasupat, P., Chang, M.W.: Realm: retrieval-augmented language model pre-training. arXiv : Computation and Language (2020)

    Google Scholar 

  14. Huang, J., Qu, L., Jia, R., Zhao, B.: O2u-net: a simple noisy label detection approach for deep neural networks (2019)

    Google Scholar 

  15. Huang, J.T., et al.: Embedding-based retrieval in Facebook search (2020)

    Google Scholar 

  16. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6769–6781 (2020)

    Google Scholar 

  17. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. arXiv : Computation and Language (2020)

    Google Scholar 

  18. Khattab, O., Zaharia, M.: Colbert: efficient and effective passage search via contextualized late interaction over bert. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 39–48 (2020)

    Google Scholar 

  19. Kim, D., Koo, J., Kim, U.M.: Osp-class: open set pseudo-labeling with noise robust training for text classification. In: 2022 IEEE International Conference on Big Data (Big Data), pp. 5520–5529. IEEE (2022)

    Google Scholar 

  20. Li, J., Socher, R., Hoi, S.C.H.: Dividemix: learning with noisy labels as semi-supervised learning. arXiv : Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  21. Li, Y., Liu, S., She, Q., Mcleod, A., Wang, B.: On learning contrastive representations for learning with noisy labels (2023)

    Google Scholar 

  22. Northcutt, C.G., Jiang, L., Chuang, I.L.: Confident learning: estimating uncertainty in dataset labels. arXiv : Machine Learning (2019)

    Google Scholar 

  23. Parker, B., Sokolov, A., Ahmed, M., Kalebic, M., Akinli Kocak, S., Shai, O.: Domain specific fine-tuning of denoising sequence-to-sequence models for natural language summarization. arXiv e-prints pp. arXiv–2204 (2022)

    Google Scholar 

  24. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Neural Inf. Process. Syst. (2019)

    Google Scholar 

  25. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  26. Qu, Y., et al.: Rocketqa: an optimized training approach to dense passage retrieval for open-domain question answering (2020)

    Google Scholar 

  27. Ren, R., et al.: Rocketqav2: a joint training method for dense passage retrieval and passage re-ranking. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 2825–2835 (2021)

    Google Scholar 

  28. Toneva, M., Sordoni, A., des Combes, R.T., Trischler, A., Bengio, Y., Gordon, G.J.: An empirical study of example forgetting during deep neural network learning. In: International Conference on Learning Representations (2018)

    Google Scholar 

  29. Wang, W., Feng, F., He, X., Nie, L., Chua, T.S.: Denoising implicit feedback for recommendation. arXiv : Information Retrieval (2020)

    Google Scholar 

  30. Zhan, J., Mao, J., Liu, Y., Guo, J., Zhang, M., Ma, S.: Optimizing dense retrieval model training with hard negatives. Cornell University - arXiv (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, M. et al. (2024). DADR: A Denoising Approach for Dense Retrieval Model Training. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14333. Springer, Singapore. https://doi.org/10.1007/978-981-97-2387-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2387-4_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2386-7

  • Online ISBN: 978-981-97-2387-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics