Skip to main content

Hypergraph-Enhanced Self-supervised Heterogeneous Graph Representation Learning

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Heterogeneous graphs are widely used to model complex systems in the real world, such as social networks, biomedical networks, and citation networks. Learning heterogeneous graph embeddings (i.e., representations) provides a way to perform deep learning-driven downstream tasks, such as recommendation and prediction. However, existing heterogeneous graph neural networks mainly capture pairwise relations in heterogeneous graphs, while real-world relations are often more complex and not limited to pairs. In this paper, we propose a novel method to capture relations beyond pairwise in heterogeneous graphs, namely HHGR. First, we construct hypergraphs from heterogeneous graphs and preserve semantic information of network schema and meta paths. Second, we design a cross-view contrast module to aggregate information on different aspects. Further, to enhance the performance of HHGR, we propose a semantic positive sampling strategy, which chooses proper positive samples according to structure and attribute semantics. Extensive experiments conducted on various real-world datasets demonstrate the state-of-the-art performance of HHGR.

This work was supported in part by the National Natural Science Foundation of China (61972268), and the Joint Innovation Foundation of Sichuan University and Nuclear Power Institute of China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/scu-kdde/HGA-HHGR-2023.

References

  1. Bai, S., Zhang, F., Torr, P.H.: Hypergraph convolution and hypergraph attention. Pattern Recognit. 110, 107637 (2021)

    Article  Google Scholar 

  2. Cao, Y., Peng, H., Yu, P.S.: Multi-information source HIN for medical concept embedding. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K., Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12085, pp. 396–408. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47436-2_30

    Chapter  Google Scholar 

  3. Cui, H., Lu, Z., Li, P., Yang, C.: On positional and structural node features for graph neural networks on non-attributed graphs. In: CIKM, pp. 3898–3902 (2022)

    Google Scholar 

  4. Davis, A.P., et al.: The comparative toxicogenomics database: update 2017. Nucleic Acids Res. 45(D1), D972–D978 (2017)

    Article  Google Scholar 

  5. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: SIGKDD, pp. 135–144 (2017)

    Google Scholar 

  6. Fan, H., et al.: Heterogeneous hypergraph variational autoencoder for link prediction. TPAMI 44(8), 4125–4138 (2022)

    MathSciNet  Google Scholar 

  7. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: AAAI, pp. 3558–3565 (2019)

    Google Scholar 

  8. Fu, X., Zhang, J., Meng, Z., King, I.: MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding. In: WWW, pp. 2331–2341 (2020)

    Google Scholar 

  9. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: SIGKDD, pp. 855–864 (2016)

    Google Scholar 

  10. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs, In: NIPS, pp. 1024–1034 (2017)

    Google Scholar 

  11. Hu, B., Zhang, Z., Shi, C., Zhou, J., Li, X., Qi, Y.: Cash-out user detection based on attributed heterogeneous information network with a hierarchical attention mechanism. In: AAAI, pp. 946–953 (2019)

    Google Scholar 

  12. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In: WWW, pp. 2704–2710 (2020)

    Google Scholar 

  13. Jin, D., Huo, C., Liang, C., Yang, L.: Heterogeneous graph neural network via attribute completion. In: WWW, pp. 391–400 (2021)

    Google Scholar 

  14. Linsker, R.: Self-organization in a perceptual network. Computer 21(3), 105–117 (1988). https://doi.org/10.1109/2.36

    Article  Google Scholar 

  15. Liu, J., Song, L., Wang, G., Shang, X.: Meta-HGT: metapath-aware hypergraph transformer for heterogeneous information network embedding. Neural Netw. 157, 65–76 (2023)

    Article  Google Scholar 

  16. Liu, Y., Pan, S., Jin, M., Zhou, C., Xia, F., Yu, P.S.: Graph self-supervised learning: a survey. TKDE (Early Access) (2022). https://doi.org/10.1109/TKDE.2022.3172903

    Article  Google Scholar 

  17. Lu, Y., Shi, C., Hu, L., Liu, Z.: Relation structure-aware heterogeneous information network embedding. In: AAAI, pp. 4456–4463 (2019)

    Google Scholar 

  18. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  20. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Tech. rep., Stanford InfoLab (1999)

    Google Scholar 

  21. Park, C., Kim, D., Han, J., Yu, H.: Unsupervised attributed multiplex network embedding. In: AAAI, pp. 5371–5378 (2020)

    Google Scholar 

  22. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: SIGKDD, pp. 701–710 (2014)

    Google Scholar 

  23. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  24. Sun, X., et al.: Heterogeneous hypergraph embedding for graph classification. In: WSDM, pp. 725–733 (2021)

    Google Scholar 

  25. Tu, K., Cui, P., Wang, X., Wang, F., Zhu, W.: Structural deep embedding for hyper-networks. In: AAAI, vol. 32 (2018)

    Google Scholar 

  26. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. In: ICLR. p. Poster (2019)

    Google Scholar 

  27. Wang, X., et al.: Heterogeneous graph attention network. In: The world Wide Web Conference, pp. 2022–2032 (2019)

    Google Scholar 

  28. Wang, X., Liu, N., Han, H., Shi, C.: Self-supervised heterogeneous graph neural network with co-contrastive learning. In: SIGKDD, pp. 1726–1736 (2021)

    Google Scholar 

  29. Wang, Z., Li, Q., Yu, D., Han, X., Gao, X., Shen, S.: Heterogeneous graph contrastive multi-view learning. ArXiv abs/2210.00248 (2022)

    Google Scholar 

  30. Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Talukdar, P.P.: HyperGCN: a new method for training graph convolutional networks on hypergraphs. In: NeurIPS, pp. 1509–1520 (2019)

    Google Scholar 

  31. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)

    Article  Google Scholar 

  32. Yun, S., Kim, K., Yoon, K., Park, C.: LTE4G: long-tail experts for graph neural networks. In: CIKM, pp. 2434–2443 (2022)

    Google Scholar 

  33. Zhang, R., Zou, Y., Ma, J.: Hyper-SAGNN: a self-attention based graph neural network for hypergraphs. In: ICLR (2020)

    Google Scholar 

  34. Zhu, Y., Xu, Y., Cui, H., Yang, C., Liu, Q., Wu, S.: Structure-enhanced heterogeneous graph contrastive learning. In: SDM, pp. 82–90 (2022)

    Google Scholar 

  35. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive representation learning. ArXiv abs/2006.04131 (2020)

    Google Scholar 

  36. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., He, C., Li, L., Zhang, B., Duan, L., Zuo, J. (2024). Hypergraph-Enhanced Self-supervised Heterogeneous Graph Representation Learning. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14333. Springer, Singapore. https://doi.org/10.1007/978-981-97-2387-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2387-4_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2386-7

  • Online ISBN: 978-981-97-2387-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics