Skip to main content

LAF: A Local Depth Autoregressive Framework for Cardinality Estimation of Multi-attribute Queries

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Cardinality estimation is significant for database query optimization, which affects the query efficiency. Most existing methods often use a uniform approach to model strongly and weakly correlated attributes and seldom make comprehensively use of data information and query information. Some methods have poor accuracy due to simple structure, while others suffer from low efficiency due to complex structure. The problem of cardinality estimation that strong and weak association coexist among attributes can not be well solved by these methods or their simple combinations. Therefore we propose LAF, a new Local deep Autoregressive Framework, which performs fine-grained modeling for attributes with strong and weak correlation. LAF utilizes mutual information to identify the strong and weak association between attributes, applying the local strategy to construct deep autoregressive models to learn the joint distribution for strongly correlated attributes and outputting corresponding local estimations, using lightweight regression model to capture the complex mapping between local estimations with weak correlation and cardinality, and LAF combines information entropy to sort attributes in descending order. Not only do we enable local deep autoregressive models to learn from data information, but also make lightweight regression model to learn from query information. Extensive experimental evaluations on real datasets show that accurate result is achieved while estimation time is significantly shortened, and model size is controlled within a reasonable range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruno, N., Chaudhuri, S., Gravano, L.: STHoles: a multidimensional workload-aware histogram. In: Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, pp. 211–222 (2001)

    Google Scholar 

  2. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theory 14(3), 462–467 (2006)

    Article  Google Scholar 

  3. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken (2012)

    Google Scholar 

  4. Dua, D., Graff, C.: UCI machine learning repository (2017). https://archive.ics.uci.edu/ml/index.php

  5. Dutt, A., Wang, C., Nazi, A., Kandula, S., Narasayya, V., Chaudhuri, S.: Selectivity estimation for range predicates using lightweight models. Proc. VLDB Endow. 12(9), 1044–1057 (2019)

    Article  Google Scholar 

  6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  7. Gunopulos, D., Kollios, G., Tsotras, V.J., Domeniconi, C.: Selectivity estimators for multidimensional range queries over real attributes. Proc. VLDB Endow. 14(2), 137–154 (2005)

    Google Scholar 

  8. Hasan, S., Thirumuruganathan, S., Augustine, J., Koudas, N., Das, G.: Deep learning models for selectivity estimation of multi-attribute queries. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 1035–1050 (2020)

    Google Scholar 

  9. Heimel, M., Kiefer, M., Markl, V.: Self-tuning, GPU-accelerated kernel density models for multidimensional selectivity estimation. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1477–1492 (2015)

    Google Scholar 

  10. Hilprecht, B., Schmidt, A., Kulessa, M., Molina, A., Kersting, K., Binnig, C.: DeepDB: learn from data, not from queries! Proc. VLDB Endow. 13(7), 992–1005 (2020)

    Article  Google Scholar 

  11. Kim, K., Jung, J., Seo, I., Han, W.S., Choi, K., Chong, J.: Learned cardinality estimation: An in-depth study. In: Proceedings of the 2022 ACM SIGMOD International Conference on Management of Data, pp. 1214–1227 (2022)

    Google Scholar 

  12. Kipf, A., Kipf, T., Radke, B., Leis, V., Boncz, P., Kemper, A.: Learned cardinalities: estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677 (2018)

  13. Kwon, S., Jung, W., Shim, K.: Cardinality estimation of approximate substring queries using deep learning. Proc. VLDB Endow. 15(11), 3145–3157 (2022)

    Article  Google Scholar 

  14. Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neumann, T.: How good are query optimizers, really? Proc. VLDB Endow. 9(3), 204–215 (2015)

    Article  Google Scholar 

  15. Leis, V., Radke, B., Gubichev, A., Kemper, A., Neumann, T.: Cardinality estimation done right: Index-based join sampling. In: CIDR (2017)

    Google Scholar 

  16. Nash, C., Durkan, C.: Autoregressive energy machines. In: International Conference on Machine Learning, pp. 1735–1744. PMLR (2019)

    Google Scholar 

  17. Park, Y., Zhong, S., Mozafari, B.: QuickSel: quick selectivity learning with mixture models. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 1017–1033 (2020)

    Google Scholar 

  18. Poosala, V., Ioannidis, Y.E.: Selectivity estimation without the attribute value independence assumption. In: VLDB, vol. 97, pp. 486–495 (1997)

    Google Scholar 

  19. Sun, J., Li, G., Tang, N.: Learned cardinality estimation for similarity queries. In: Proceedings of the 2021 ACM SIGMOD International Conference on Management of Data, pp. 1745–1757 (2021)

    Google Scholar 

  20. Tzoumas, K., Deshpande, A., Jensen, C.S.: Lightweight graphical models for selectivity estimation without independence assumptions. Proc. VLDB Endow. 4(11), 852–863 (2011)

    Article  Google Scholar 

  21. Wang, X., Qu, C., Wu, W., Wang, J., Zhou, Q.: Are we ready for learned cardinality estimation? Proc. VLDB Endow. 14(9), 1640–1654 (2021)

    Article  Google Scholar 

  22. Wu, P., Cong, G.: A unified deep model of learning from both data and queries for cardinality estimation. In: Proceedings of the 2021 ACM SIGMOD International Conference on Management of Data, pp. 2009–2022 (2021)

    Google Scholar 

  23. Yang, Z., et al.: NeuroCard: one cardinality estimator for all tables. Proc. VLDB Endow. 14(1), 61–73 (2020)

    Article  Google Scholar 

  24. Yang, Z., et al.: Deep unsupervised cardinality estimation. Proc. VLDB Endow. 13(3), 279–292 (2019)

    Article  Google Scholar 

  25. Zanettin, F.: State of New York. Vehicle, snowmobile, and boat registrations (2019). https://catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations

  26. Zhao, Z., Christensen, R., Li, F., Hu, X., Yi, K.: Random sampling over joins revisited. In: Proceedings of the 2018 ACM SIGMOD International Conference on Management of Data, pp. 1525–1539 (2018)

    Google Scholar 

  27. Zhu, R.: Flat: fast, lightweight and accurate method for cardinality estimation. Proc. VLDB Endow. 14(9), 1489–1502 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China (No. 62072282), Industrial Internet Innovation and Development Project in 2019 of China, Shandong Provincial Key Research and Development Program (No. 2019JZZY010105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, Q., Li, H., Wang, D., Zhang, Y., Peng, Z. (2024). LAF: A Local Depth Autoregressive Framework for Cardinality Estimation of Multi-attribute Queries. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14333. Springer, Singapore. https://doi.org/10.1007/978-981-97-2387-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2387-4_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2386-7

  • Online ISBN: 978-981-97-2387-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics