Skip to main content

DYGL: A Unified Benchmark and Library for Dynamic Graph

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Difficulty in reproducing the code and inconsistent experimental methods hinder the development of the dynamic network field. We present DYGL, a unified, comprehensive, and extensible library for dynamic graph representation learning. The main goal of the library is to make dynamic graph representation learning available for researchers in a unified easy-to-use framework. To accelerate the development of new models, we design unified model interfaces based on unified data formats, which effectively encapsulate the details of the implementation. Experiments demonstrate the predictive performance of the models implemented in the library on node classification and link prediction. Our library will contribute to the standardization and reproducibility in the field of the dynamic graph. The project is released at the link: https://github.com/half-salve/DYGL-lib

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: capturing network dynamics using dynamic graph representation learning. CoRR abs/1809.02657 (2018). http://arxiv.org/abs/1809.02657

  2. Goyal, P., Kamra, N., He, X., Liu, Y.: DynGEM: deep embedding method for dynamic graphs. CoRR abs/1805.11273 (2018). http://arxiv.org/abs/1805.11273

  3. Hajiramezanali, E., Hasanzadeh, A., Narayanan, K., Duffield, N., Zhou, M., Qian, X.: Variational graph recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 10700–10710 (2019)

    Google Scholar 

  4. Kipf, T.N., Welling, M.: Variational graph auto-encoders (2016)

    Google Scholar 

  5. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in temporal interaction networks. In: Association for Computing Machinery, pp. 1269–1278 (2019). https://doi.org/10.1145/3292500.3330895

  6. Pareja, A., et al.: EvolveGCN: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 5363–5370 (2020). https://doi.org/10.1609/aaai.v34i04.5984, https://ojs.aaai.org/index.php/AAAI/article/view/5984

  7. Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., Bronstein, M.M.: Temporal graph networks for deep learning on dynamic graphs. CoRR abs/2006.10637 (2020). https://arxiv.org/abs/2006.10637

  8. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: Representation learning over dynamic graphs. CoRR abs/1803.04051 (2018). http://arxiv.org/abs/1803.04051

  9. Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017). http://arxiv.org/abs/1706.03762

  10. Wang, Y., Chang, Y., Liu, Y., Leskovec, J., Li, P.: Inductive representation learning in temporal networks via causal anonymous walks. CoRR abs/2101.05974 (2021)

    Google Scholar 

  11. Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., Achan, K.: Inductive representation learning on temporal graphs. arXiv preprint arXiv:2002.07962 (2020)

  12. Xu, D., Cheng, W., Luo, D., Liu, X., Zhang, X.: Spatio-temporal attentive RNN for node classification in temporal attributed graphs. In: IJCAI, pp. 3947–3953 (2019)

    Google Scholar 

  13. Zheng, Y., Wang, H., Wei, Z., Liu, J., Wang, S.: Instant graph neural networks for dynamic graphs (2022). https://doi.org/10.48550/ARXIV.2206.01379, https://arxiv.org/abs/2206.01379

  14. Zhou, D., Zheng, L., Han, J., He, J.: A data-driven graph generative model for temporal interaction networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD 2020, New York, NY, USA, pp. 401–411. Association for Computing Machinery (2020). https://doi.org/10.1145/3394486.3403082

Download references

Acknowledgements

This research was partially supported by the National Key Research and Development Project of China No. 2021ZD0110700, the Key Research and Development Project in Shaanxi Province No. 2022GXLH-01-03, the National Science Foundation of China under Grant Nos. 62002282, 62037001, 62250009 and 61721002, the Major Technological Innovation Project of Hangzhou No. 2022AIZD0113, the “Pioneer” and “Leading Goose” R &D Program of Zhejiang No. 2022C01107, the China Postdoctoral Science Foundation No. 2020M683492, the MOE Innovation Research Team No. IRT_17R86, and Project of XJTU-SERVYOU Joint Tax-AI Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, T., Shi, B., Xu, Y., Zhao, Z., Liang, S., Dong, B. (2024). DYGL: A Unified Benchmark and Library for Dynamic Graph. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14333. Springer, Singapore. https://doi.org/10.1007/978-981-97-2387-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2387-4_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2386-7

  • Online ISBN: 978-981-97-2387-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics