Skip to main content

TSKE: Two-Stream Knowledge Embedding for Cyberspace Security

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Knowledge representation models have been extensively studied and adopted in many areas such as search, recommendation, etc. However, due to the highly spatio-temporal relevant characteristics of cyberspace security and the dynamic variability of the domain knowledge, the existing models and knowledge embedding methods cannot be adopted in this field directly. In this paper, we propose a two-stream knowledge embedding (TSKE) method for cyberspace security to jointly embed multi-dimensional characteristics. Specifically, we design a static stream neural network and a spatio-temporal stream neural network to extract the static knowledge and the spatio-temporal features of cyberspace security facts, which converts this domain knowledge into vector space. Considering the attack link prediction task in the field of cyberspace security, we conduct extensive experiments and TSKE outperforms other static and dynamic embedding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28(5), 823–870 (2007)

    Article  Google Scholar 

  2. Gaikwad, S.K., Gawali, B.W., Yannawar, P.: A review on speech recognition technique. Int. J. Comput. Appl. 10(3), 16–24 (2010)

    Google Scholar 

  3. Dimitrakopoulos, G., Demestichas, P.: Intelligent transportation systems. IEEE Veh. Technol. Mag. 5(1), 77–84 (2010)

    Article  Google Scholar 

  4. Janai, J., Güney, F., Behl, A., Geiger, A., et al.: Computer vision for autonomous vehicles: problems, datasets and state of the art. Found. Trends® Comput. Graph. Vis. 12(1–3), 1–308 (2020)

    Google Scholar 

  5. Alam, M.R., Reaz, M.B.I., Ali, M.A.M.: A review of smart homes-past, present, and future. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 42(6), 1190–1203 (2012)

    Google Scholar 

  6. Liu, R., Fu, R., Xu, K., Shi, X., Ren, X.: A review of knowledge graph-based reasoning technology in the operation of power systems. Appl. Sci. 13(7), 4357 (2023)

    Google Scholar 

  7. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  8. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network (2017). arXiv preprint arXiv:1712.02121

  9. Dasgupta, S.S., Ray, S.N., Talukdar, P.: HyTE: hyperplane-based temporally aware knowledge graph embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2001–2011 (2018)

    Google Scholar 

  10. Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for temporal knowledge graph completion. Proc. AAAI Conf. Artif. Intell. 34(04), 3988–3995 (2020)

    Google Scholar 

  11. Jia, Y., Gu, Z., Li, A. (eds.): MDATA: A New Knowledge Representation Model. LNCS, vol. 12647. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71590-8

    Book  Google Scholar 

  12. García-Durán, A., Dumančić, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion (2018). arXiv preprint arXiv:1809.03202

  13. Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. SEMANTiCS (Posters, Demos, SuCCESS) 48(1–4), 2 (2016)

    Google Scholar 

  14. Qi, Y., Jiang, R., Jia, Y., Li, R., Li, A.: Association analysis algorithm based on knowledge graph for space-ground integrated network. In: 2018 IEEE 18th International Conference on Communication Technology (ICCT), pp. 222–226. IEEE (2018)

    Google Scholar 

  15. Narayanan, S., Ganesan, A., Joshi, K., Oates, T., Joshi, A., Finin, T.: Cognitive techniques for early detection of cybersecurity events (2018). arXiv preprint arXiv:1808.00116

  16. Zhang, Z., et al.: STG2P: a two-stage pipeline model for intrusion detection based on improved LightGBM and k-means. Simul. Model. Pract. Theory 120, 102614 (2022)

    Article  Google Scholar 

  17. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, no. 1 (2014)

    Google Scholar 

  18. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  19. Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)

    Google Scholar 

  20. Yang, B., Yih, W.-T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases (2014). arXiv preprint arXiv:1412.6575

  21. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)

    Google Scholar 

  22. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  23. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

    Google Scholar 

  24. Jiang, T., Liu, T., Ge, T., Sha, L., Chang, B., Li, S., Sui, Z.: Towards time-aware knowledge graph completion. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 1715–1724 (2016)

    Google Scholar 

  25. Liu, Yu., Hua, W., Xin, K., Zhou, X.: Context-aware temporal knowledge graph embedding. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds.) WISE 2020. LNCS, vol. 11881, pp. 583–598. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34223-4_37

    Chapter  Google Scholar 

  26. Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: Autoregressive structure inference over temporal knowledge graphs (2019). arXiv preprint arXiv:1904.05530

  27. Li, Z., et al.: Temporal knowledge graph reasoning based on evolutional representation learning. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 408–417 (2021)

    Google Scholar 

Download references

Acknowledgment

This work is supported in part by the Major Key Project of PCL (Grant No. PCL2022A03), and Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies (2022B1212010005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoquan Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, A., Wang, H., Zhang, J., Liu, Y., Ma, C., Gu, Z. (2024). TSKE: Two-Stream Knowledge Embedding for Cyberspace Security. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14332. Springer, Singapore. https://doi.org/10.1007/978-981-97-2390-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2390-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2389-8

  • Online ISBN: 978-981-97-2390-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics