Abstract
Knowledge representation models have been extensively studied and adopted in many areas such as search, recommendation, etc. However, due to the highly spatio-temporal relevant characteristics of cyberspace security and the dynamic variability of the domain knowledge, the existing models and knowledge embedding methods cannot be adopted in this field directly. In this paper, we propose a two-stream knowledge embedding (TSKE) method for cyberspace security to jointly embed multi-dimensional characteristics. Specifically, we design a static stream neural network and a spatio-temporal stream neural network to extract the static knowledge and the spatio-temporal features of cyberspace security facts, which converts this domain knowledge into vector space. Considering the attack link prediction task in the field of cyberspace security, we conduct extensive experiments and TSKE outperforms other static and dynamic embedding methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28(5), 823–870 (2007)
Gaikwad, S.K., Gawali, B.W., Yannawar, P.: A review on speech recognition technique. Int. J. Comput. Appl. 10(3), 16–24 (2010)
Dimitrakopoulos, G., Demestichas, P.: Intelligent transportation systems. IEEE Veh. Technol. Mag. 5(1), 77–84 (2010)
Janai, J., Güney, F., Behl, A., Geiger, A., et al.: Computer vision for autonomous vehicles: problems, datasets and state of the art. Found. Trends® Comput. Graph. Vis. 12(1–3), 1–308 (2020)
Alam, M.R., Reaz, M.B.I., Ali, M.A.M.: A review of smart homes-past, present, and future. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 42(6), 1190–1203 (2012)
Liu, R., Fu, R., Xu, K., Shi, X., Ren, X.: A review of knowledge graph-based reasoning technology in the operation of power systems. Appl. Sci. 13(7), 4357 (2023)
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. Advances in Neural Information Processing Systems, vol. 26 (2013)
Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network (2017). arXiv preprint arXiv:1712.02121
Dasgupta, S.S., Ray, S.N., Talukdar, P.: HyTE: hyperplane-based temporally aware knowledge graph embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2001–2011 (2018)
Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for temporal knowledge graph completion. Proc. AAAI Conf. Artif. Intell. 34(04), 3988–3995 (2020)
Jia, Y., Gu, Z., Li, A. (eds.): MDATA: A New Knowledge Representation Model. LNCS, vol. 12647. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71590-8
García-Durán, A., Dumančić, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion (2018). arXiv preprint arXiv:1809.03202
Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. SEMANTiCS (Posters, Demos, SuCCESS) 48(1–4), 2 (2016)
Qi, Y., Jiang, R., Jia, Y., Li, R., Li, A.: Association analysis algorithm based on knowledge graph for space-ground integrated network. In: 2018 IEEE 18th International Conference on Communication Technology (ICCT), pp. 222–226. IEEE (2018)
Narayanan, S., Ganesan, A., Joshi, K., Oates, T., Joshi, A., Finin, T.: Cognitive techniques for early detection of cybersecurity events (2018). arXiv preprint arXiv:1808.00116
Zhang, Z., et al.: STG2P: a two-stage pipeline model for intrusion detection based on improved LightGBM and k-means. Simul. Model. Pract. Theory 120, 102614 (2022)
Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, no. 1 (2014)
Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)
Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)
Yang, B., Yih, W.-T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases (2014). arXiv preprint arXiv:1412.6575
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)
Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)
Jiang, T., Liu, T., Ge, T., Sha, L., Chang, B., Li, S., Sui, Z.: Towards time-aware knowledge graph completion. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 1715–1724 (2016)
Liu, Yu., Hua, W., Xin, K., Zhou, X.: Context-aware temporal knowledge graph embedding. In: Cheng, R., Mamoulis, N., Sun, Y., Huang, X. (eds.) WISE 2020. LNCS, vol. 11881, pp. 583–598. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34223-4_37
Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: Autoregressive structure inference over temporal knowledge graphs (2019). arXiv preprint arXiv:1904.05530
Li, Z., et al.: Temporal knowledge graph reasoning based on evolutional representation learning. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 408–417 (2021)
Acknowledgment
This work is supported in part by the Major Key Project of PCL (Grant No. PCL2022A03), and Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies (2022B1212010005).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhao, A., Wang, H., Zhang, J., Liu, Y., Ma, C., Gu, Z. (2024). TSKE: Two-Stream Knowledge Embedding for Cyberspace Security. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14332. Springer, Singapore. https://doi.org/10.1007/978-981-97-2390-4_10
Download citation
DOI: https://doi.org/10.1007/978-981-97-2390-4_10
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-2389-8
Online ISBN: 978-981-97-2390-4
eBook Packages: Computer ScienceComputer Science (R0)