Skip to main content

Global and Local Structure Discrimination for Effective and Robust Outlier Detection

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14332))

  • 97 Accesses

Abstract

Deep outlier detection on high dimensional data is an important research problem with critical applications in many areas. Though promising performance has been demonstrated, we observe that existing methods characterized outliers only from a single perspective, which leads to reducing the distinction of inliers/outliers with the growth of training epochs. This in turn hurts the robustness and effectiveness of outlier detection since the optimal training epoch on a special dataset is unknown in unsupervised scenarios. In this paper, we propose a DNN based framework with both global and local structure discrimination for effective and robust Outlier Detection, named GOOD. The global module compacts the data (mainly inliers) since the majority of data are inliers, while the local module scatters the data (mainly outliers) based on that outliers reside in low-probability density areas. These two modules are cleverly united by a self-adaptive weighting strategy that trades off the degree of complementary and competitive cooperation. The complementary views can help effectively detect outliers with diverse characteristics, and such competitive learning can prevent a single module from learning the entire data too well and ensure robust detection performance. Comprehensive experimental studies on datasets from diverse domains show that GOOD significantly outperforms state-of-the-art methods by up to 30\(\%\) improvement of AUC while performing much more robustly with the growth of training epochs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    KDDCUP99 contains semantically real inliers and outliers, so no further inlier sampling is adopted.

  2. 2.

    Note that this is different from the default settings of training epochs in the corresponding papers since different datasets are adopted here, thus the reported results may also be different.

References

  1. Ahmed, M., Mahmood, A.N., Islam, M.R.: A survey of anomaly detection techniques in financial domain. FGCS 55, 278–288 (2016)

    Article  Google Scholar 

  2. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2(1) (2015)

    Google Scholar 

  3. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)

    Google Scholar 

  4. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. TPAMI 33(8), 1548–1560 (2010)

    Google Scholar 

  5. Campos, G.O., et al.: On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. DMKD 30(4), 891–927 (2016)

    Google Scholar 

  6. Cao, L., Yang, D., Wang, Q., Yu, Y., Wang, J., Rundensteiner, E.A.: Scalable distance-based outlier detection over high-volume data streams. In: ICDE, pp. 76–87. IEEE (2014)

    Google Scholar 

  7. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey. arXiv preprint arXiv:1901.03407 (2019)

  8. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. CSUR 41(3), 15 (2009)

    Article  Google Scholar 

  9. Chen, J., Sathe, S., Aggarwal, C., Turaga, D.: Outlier detection with autoencoder ensembles. In: SDM, pp. 90–98. SIAM (2017)

    Google Scholar 

  10. Cheng, L., Wang, Y., Liu, X., Li, B.: Outlier detection ensemble with embedded feature selection. In: AAAI, pp. 3503–3512 (2020)

    Google Scholar 

  11. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class svm with deep learning. Pattern Recogn. 58, 121–134 (2016)

    Article  Google Scholar 

  12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: a new benchmark collection for text categorization research. JMLR 5, 361–397 (2004)

    Google Scholar 

  16. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: ICDM, pp. 413–422. IEEE (2008)

    Google Scholar 

  17. Makhzani, A., Frey, B.: K-sparse autoencoders. arXiv preprint arXiv:1312.5663 (2013)

  18. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) Artificial Neural Networks and Machine Learning. ICANN 2011, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

  19. Pang, G., Ting, K.M., Albrecht, D.: Lesinn: detecting anomalies by identifying least similar nearest neighbours. In: ICDMW, pp. 623–630. IEEE (2015)

    Google Scholar 

  20. Ruff, L., et al.: Deep one-class classification. In: ICML, pp. 4393–4402 (2018)

    Google Scholar 

  21. Sabokrou, M., Fayyaz, M., Fathy, M., Klette, R.: Fully convolutional neural network for fast anomaly detection in crowded scenes. arXiv preprint arXiv:1609.00866 (2016)

  22. Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: MLSDA Workshop, p. 4. ACM (2014)

    Google Scholar 

  23. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) Information Processing in Medical Imaging. IPMI 2017, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

  24. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  Google Scholar 

  25. Singh, A.: Anomaly detection for temporal data using long short-term memory (LSTM) (2017)

    Google Scholar 

  26. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD cup 99 data set. In: CISDA, pp. 1–6. IEEE (2009)

    Google Scholar 

  27. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: ICML, pp. 1096–1103. ACM (2008)

    Google Scholar 

  28. Wang, S., et al.: Effective end-to-end unsupervised outlier detection via inlier priority of discriminative network. In: NeurIPS, pp. 5960–5973 (2019)

    Google Scholar 

  29. Xia, Y., Cao, X., Wen, F., Hua, G., Sun, J.: Learning discriminative reconstructions for unsupervised outlier removal. In: ICCV, pp. 1511–1519 (2015)

    Google Scholar 

  30. Xu, D., Ricci, E., Yan, Y., Song, J., Sebe, N.: Learning Deep Representations of Appearance and Motion for Anomalous Event Detection, pp. 8.1–8.12 (2015)

    Google Scholar 

  31. Zenati, H., Romain, M., Foo, C.S., Lecouat, B., Chandrasekhar, V.: Adversarially learned anomaly detection. In: ICDM, pp. 727–736. IEEE (2018)

    Google Scholar 

  32. Zhang, J., Zulkernine, M.: Anomaly based network intrusion detection with unsupervised outlier detection. In: ICC, vol. 5, pp. 2388–2393. IEEE (2006)

    Google Scholar 

  33. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: SIGKDD, pp. 665–674. ACM (2017)

    Google Scholar 

  34. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, C., Cheng, L., Yao, F., He, R. (2024). Global and Local Structure Discrimination for Effective and Robust Outlier Detection. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14332. Springer, Singapore. https://doi.org/10.1007/978-981-97-2390-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2390-4_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2389-8

  • Online ISBN: 978-981-97-2390-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics