Skip to main content

MEOM: Memory-Efficient Online Meta-recommender forĀ Cold-Start Recommendation

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Online recommender systems aim to provide timely recommended results by constantly updating the model with new interactions. However, existing methods require sufficient personal data and fail to accurately support online recommendations for cold-start users. Although the state-of-the-art method adopts meta-learning to solve this problem, it requires to recall previously seen data for model update, which is impractical due to linearly increasing memory over time. In this paper, we propose a memory-efficient online meta-recommender MEOM that can avoid the explicit use of historical data while achieving high accuracy. The recommender adopts MAML as a meta-learner and particularly adapts it to online scenarios with effective regularization. Specifically, an online regularization method is designed to summarize the time-varying model and historical task gradients, such that overall model optimization direction can be acquired to parameterize a meaningful regularizer as a penalty for next round model update. The regularizer is then utilized to guide model updates with prior knowledge in a memory-efficient and accurate manner. Besides, to avoid task-overfitting, an adaptive learning rate strategy is adopted to control model adaptation by more suitable learning rates in dual levels. Experimental results on two real-world datasets show that our method can significantly reduce memory consumption while keeping accuracy performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our code is available at: https://anonymous.4open.science/r/MEOM-master-4239,

  2. 2.

    https://grouplens.org/datasets/movielens/.

  3. 3.

    https://www.yelp.com/dataset/.

References

  1. Acar, D.A.E., Zhu, R., Saligrama, V.: Memory efficient online meta learning. In: ICML 2021, pp. 32ā€“42. PMLR (2021)

    Google ScholarĀ 

  2. Al-Ghossein, M., Abdessalem, T., Barre, A.: A survey on stream-based recommender systems. ACM Comput. Surv. (CSUR) 54(5), 1ā€“36 (2021)

    ArticleĀ  Google ScholarĀ 

  3. Chen, F., Luo, M., Dong, Z., etĀ al.: Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876 (2018)

  4. Cheng, H.T., Koc, L., Harmsen, J., etĀ al.: Wide & deep learning for recommender systems. In: DLRS 2016, pp. 7ā€“10 (2016)

    Google ScholarĀ 

  5. Dong, M., Yuan, F., Yao, L., etĀ al.: Mamo: memory-augmented meta-optimization for cold-start recommendation. In: SIGKDD 2020, pp. 688ā€“697 (2020)

    Google ScholarĀ 

  6. Du, Z., Wang, X., Yang, H., etĀ al.: Sequential scenario-specific meta learner for online recommendation. In: SIGKDD 2019, pp. 2895ā€“2904 (2019)

    Google ScholarĀ 

  7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML 2017, pp. 1126ā€“1135. PMLR (2017)

    Google ScholarĀ 

  8. Kim, M., Song, H., Shin, Y., etĀ al.: Meta-learning for online update of recommender systems. arXiv preprint arXiv:2203.10354 (2022)

  9. Lee, H., Im, J., Jang, S., etĀ al.: MeLU: meta-learned user preference estimator for cold-start recommendation. In: SIGKDD 2019, pp. 1073ā€“1082 (2019)

    Google ScholarĀ 

  10. Li, J., Jing, M., Lu, K., etĀ al.: From zero-shot learning to cold-start recommendation. In: AAAI 2019, vol.Ā 33, pp. 4189ā€“4196 (2019)

    Google ScholarĀ 

  11. Li, Y., Xu, J., et al.: ATLRec: an attentional adversarial transfer learning network for cross-domain recommendation. J. Comput. Sci. Technol. 35(4), 794ā€“808 (2020)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  12. Lv, Y., Xu, J., Zhou, R., Fang, J., Liu, C.: SSRGAN: a generative adversarial network for streaming sequential recommendation. In: Jensen, C.S., et al. (eds.) DASFAA 2021. LNCS, vol. 12683, pp. 36ā€“52. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73200-4_3

    ChapterĀ  Google ScholarĀ 

  13. Song, J., Xu, J., Zhou, R., etĀ al.: CBML: a cluster-based meta-learning model for session-based recommendation. In: CIKM, pp. 1713ā€“1722 (2021)

    Google ScholarĀ 

  14. Sun, H., Xu, J., Zheng, K., etĀ al.: MFNP: a meta-optimized model for few-shot next POI recommendation. In: Zhou, Z. (ed.) IJCAI 2021, pp. 3017ā€“3023 (2021)

    Google ScholarĀ 

  15. Sun, H., Xu, J., Zhou, R., et al.: HOPE: a hybrid deep neural model for out-of-town next POI recommendation. WWW 24(5), 1749ā€“1768 (2021)

    Google ScholarĀ 

  16. Sun, X., Shi, T., Gao, X., etĀ al.: FORM: follow the online regularized meta-leader for cold-start recommendation. In: SIGIR 2021, pp. 1177ā€“1186 (2021)

    Google ScholarĀ 

  17. Wang, L., Jin, B., Huang, Z., etĀ al.: Preference-adaptive meta-learning for cold-start recommendation. In: IJCAI 2021, pp. 1607ā€“1614 (2021)

    Google ScholarĀ 

  18. Wang, Q., Yin, H., Hu, Z., etĀ al.: Neural memory streaming recommender networks with adversarial training. In: SIGKDD 2018, pp. 2467ā€“2475 (2018)

    Google ScholarĀ 

  19. Wang, W., Yin, H., etĀ al.: Streaming ranking based recommender systems. In: SIGIR 2018, pp. 525ā€“534 (2018)

    Google ScholarĀ 

  20. Xu, J., Song, J., Sang, Y., et al.: CDAML: a cluster-based domain adaptive meta-learning model for cross domain recommendation. WWW 26(3), 989ā€“1003 (2023)

    Google ScholarĀ 

  21. Yu, B., Li, X., Fang, J., et al.: Memory-augmented meta-learning framework for session-based target behavior recommendation. WWW 26(1), 233ā€“251 (2023)

    Google ScholarĀ 

  22. Yu, R., Gong, Y., He, X., etĀ al.: Personalized adaptive meta learning for cold-start user preference prediction. In: AAAI 2021, vol.Ā 35, pp. 10772ā€“10780 (2021)

    Google ScholarĀ 

  23. Zhang, Y., Feng, etĀ al.: How to retrain recommender system? A sequential meta-learning method. In: SIGIR 2020, pp. 1479ā€“1488 (2020)

    Google ScholarĀ 

  24. Zhou, G., Zhu, X., Song, C., etĀ al.: Deep interest network for click-through rate prediction. In: SIGKDD 2018, pp. 1059ā€“1068 (2018)

    Google ScholarĀ 

  25. Zhu, F., Wang, Y., Chen, C., etĀ al.: Cross-domain recommendation: challenges, progress, and prospects. arXiv preprint arXiv:2103.01696 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruoqian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, Y., Zhang, R. (2024). MEOM: Memory-Efficient Online Meta-recommender forĀ Cold-Start Recommendation. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14332. Springer, Singapore. https://doi.org/10.1007/978-981-97-2390-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2390-4_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2389-8

  • Online ISBN: 978-981-97-2390-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics