Skip to main content

ANSWER: Automatic Index Selector for Knowledge Graphs

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Efficient access to knowledge graphs is identified as the basic premise to make full use of knowledge graphs. Since the query processing efficiency is mainly affected by index configuration, it is necessary to create effective indexes for knowledge graphs. However, none of existing studies of index selection focuses on the characteristics of knowledge graphs. To fill this gap, we propose an automatic index selector for knowledge graphs based on reinforcement learning, named ANSWER, to select an appropriate index configuration according to the historical workloads. However, it is challenging a learn a well-trained index selection model due to the large action space of reinforcement learning model and the requirement of lightweight embedding strategies. To address this problem, we first develop a novel predicate filter, which not only determines which vertical partitioning tables are valuable to create indexes, but also reduces the action space of model. Based on the filtered predicates, we derive an effective and lightweight encoder to not only embed the main features of workloads into the model, but also guarantee the high-efficiency of ANSWER. Experimental results on real-world knowledge graphs demonstrate the effectiveness of ANSWER in terms of knowledge graph query processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.linkedgeodata.org/About.

  2. 2.

    https://www.uniprot.org/help/about.

  3. 3.

    http://swat.cse.lehigh.edu/projects/lubm/.

  4. 4.

    https://yago-knowledge.org/.

  5. 5.

    https://dsg.uwaterloo.ca/watdiv/.

  6. 6.

    https://download.bio2rdf.org/.

  7. 7.

    https://dsg.uwaterloo.ca/watdiv/basic-testing.shtml.

References

  1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: SW-store: a vertically partitioned DBMS for semantic web data management. VLDB J. 18(2), 385–406 (2009)

    Article  Google Scholar 

  2. Chaudhuri, S., Narasayya, V.: Autoadmin what-if index analysis utility. ACM SIGMOD Rec. 27(2), 367–378 (1998)

    Article  Google Scholar 

  3. Chaudhuri, S., Narasayya, V.: Self-tuning database systems: a decade of progress. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 3–14 (2007)

    Google Scholar 

  4. Ding, B., Das, S., Marcus, R., Wu, W., Chaudhuri, S., Narasayya, V.R.: AI meets AI: leveraging query executions to improve index recommendations. In: Proceedings of the 2019 International Conference on Management of Data, pp. 1241–1258 (2019)

    Google Scholar 

  5. Dutt, A., Wang, C., Nazi, A., Kandula, S., Narasayya, V., Chaudhuri, S.: Selectivity estimation for range predicates using lightweight models. Proc. VLDB Endowment 12(9), 1044–1057 (2019)

    Article  Google Scholar 

  6. Hammer, M., Chan, A.: Index selection in a self-adaptive data base management system. In: Proceedings of the 1976 ACM SIGMOD International Conference on Management of Data, pp. 1–8 (1976)

    Google Scholar 

  7. Harbi, R., Abdelaziz, I., Kalnis, P., Mamoulis, N., Ebrahim, Y., Sahli, M.: Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning. VLDBJ (2016)

    Google Scholar 

  8. Harris, S., Gibbins, N.: 3store: Efficient bulk RDF storage. In: Proceedings of the 1st International Workshop on Practical and Scalable Semantic Systems, pp. 81–95 (2004)

    Google Scholar 

  9. Hasan, S., Thirumuruganathan, S., Augustine, J., Koudas, N., Das, G.: Deep learning models for selectivity estimation of multi-attribute queries. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 1035–1050 (2020)

    Google Scholar 

  10. Hopkins, M.S.: Big data, analytics and the path from insights to value. Sloan Management Review (2011)

    Google Scholar 

  11. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM (JACM) 21(2), 277–292 (1974)

    Article  MathSciNet  Google Scholar 

  12. Kara, K., Eguro, K., Zhang, C., Alonso, G.: ColumnML: column-store machine learning with on-the-fly data transformation. Proc. VLDB Endowment 12(4), 348–361 (2018)

    Article  Google Scholar 

  13. Kossmann, J., Halfpap, S., Jankrift, M., Schlosser, R.: Magic mirror in my hand, which is the best in the land? An experimental evaluation of index selection algorithms. Proc. VLDB Endowment 13(12), 2382–2395 (2020)

    Article  Google Scholar 

  14. Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index structures. In: Proceedings of the 2018 International Conference on Management of Data, pp. 489–504 (2018)

    Google Scholar 

  15. Lan, H., Bao, Z., Peng, Y.: An index advisor using deep reinforcement learning. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 2105–2108 (2020)

    Google Scholar 

  16. Licks, G.P., Meneguzzi, F.: Automated database indexing using model-free reinforcement learning (2020). arXiv preprint arXiv:2007.14244

  17. Müller, M., Moerkotte, G., Kolb, O.: Improved selectivity estimation by combining knowledge from sampling and synopses. Proc. VLDB Endowment 11(9), 1016–1028 (2018)

    Article  Google Scholar 

  18. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. Proc. VLDB Endowment 1(1), 647–659 (2008)

    Article  Google Scholar 

  19. Pan, Z., Heflin, J.: DLDB: extending relational databases to support semantic web queries. In: Proceedings of the 1st International Workshop on Practical and Scalable Semantic Systems, pp. 109–113 (2004)

    Google Scholar 

  20. Puterman, M.L.: Markov decision processes. Handbooks Oper. Res. Manag. Sci. 2, 331–434 (1990)

    Article  MathSciNet  Google Scholar 

  21. Robinson, I., Webber, J., Eifrem, E.: Graph databases: new opportunities for connected data. “O’Reilly Media, Inc.” (2015)

    Google Scholar 

  22. Sadri, Z., Gruenwald, L., Lead, E.: DRLindex: deep reinforcement learning index advisor for a cluster database. In: Proceedings of the 24th Symposium on International Database Engineering & Applications, pp. 1–8 (2020)

    Google Scholar 

  23. Sattler, K.U., Geist, I., Schallehn, E.: QUIET: continuous query-driven index tuning. In: Proceedings 2003 VLDB Conference, pp. 1129–1132. Elsevier (2003)

    Google Scholar 

  24. Schkolnick, M.: The optimal selection of secondary indices for files. Inf. Syst. 1(4), 141–146 (1975)

    Article  MathSciNet  Google Scholar 

  25. Stonebraker, M.: The choice of partial inversions and combined indices. Int. J. Comput. Inf. Sci. 3(2), 167–188 (1974)

    Article  Google Scholar 

  26. Sun, W., Fokoue, A., Srinivas, K., Kementsietsidis, A., Hu, G., Xie, G.: SQLGraph: an efficient relational-based property graph store. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1887–1901 (2015)

    Google Scholar 

  27. Wang, X., Qu, C., Wu, W., Wang, J., Zhou, Q.: Are we ready for learned cardinality estimation? Proc. VLDB Endowment 14(9), 1640–1654 (2021)

    Article  Google Scholar 

  28. Wilkinson, K., Wilkinson, K.: Jena property table implementation. In: Proceedings of the 2nd International Workshop on Scalable Semantic Web Knowledge Base Systems, pp. 35–46. Citeseer (2006)

    Google Scholar 

  29. Yan, Yu., Wang, H.: General model for index recommendation based on convolutional neural network. In: Zeng, J., Jing, W., Song, X., Lu, Z. (eds.) ICPCSEE 2020. CCIS, vol. 1257, pp. 3–15. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-7981-3_1

    Chapter  Google Scholar 

  30. Yan, Y., Yao, S., Wang, H., Gao, M.: Index selection for NoSQL database with deep reinforcement learning. Inf. Sci. 561, 20–30 (2021)

    Article  Google Scholar 

  31. Zhang, R., Liu, P., Guo, X., Li, S., Wang, X.: A unified relational storage scheme for RDF and property graphs. In: Ni, W., Wang, X., Song, W., Li, Y. (eds.) WISA 2019. LNCS, vol. 11817, pp. 418–429. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30952-7_41

    Chapter  Google Scholar 

Download references

Acknowledgements

This paper was partially supported by NSFC grant U1866602. Haoran Zhang and Zhixin Qi contributed to the work equally and should be regarded as co-first authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qi, Z., Zhang, H., Wang, H., Chao, Z. (2024). ANSWER: Automatic Index Selector for Knowledge Graphs. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14332. Springer, Singapore. https://doi.org/10.1007/978-981-97-2390-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2390-4_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2389-8

  • Online ISBN: 978-981-97-2390-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics