Abstract
The fire spreads rapidly in the tunnel due to the narrow space and high sealing, which makes rescue hard and threatens the citizen’s lives. However, the lack of public fire datasets makes it challenging for networks to learn targeted representations of fire features, resulting in low detection accuracy. To tackle this problem, we construct a Tunnel Fire Anomaly Detection (TF-AD) dataset based on unsupervised training. This dataset contains 5200 high-resolution color images, including non-fire images for training and fire images with annotations for testing. Based on the TF-AD dataset, we propose an efficient tunnel fire anomaly detection model named ECS-STPM. ECS-STPM consists of a teacher and student network with identical EfficientNet-B1 structures. Additionally, considering the efficiency of adaptively assigning channel weights, we combine the convolutional kernel with channels to propose a novel attention mechanism, Efficient Kernel and Channel Attention (EKCA). EKCA replaces the Squeeze-and-Excitation (SE) networks in the MBConv module to prevent the loss of crucial information. Furthermore, we introduce the SPD-Conv module instead of the strided convolution layer to increase the detection accuracy in smaller fire areas. The experimental results on TF-AD dataset show that the pixel-level AUC-ROC and image-level AUC-ROC are up to 0.931 and 0.835, which verifies the effectiveness of our model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39
Association NFP: Highway vehicle fires (2014-2016). NFPA Fire Analysis and Research Division (2018). https://www.nfpa.org/-/media/Files/News-and-Research/Fire-statistics-and-reports/Vehicle%20fires/osvehiclefires.pdf
Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4183–4192 (2020)
Cohen, N., Hoshen, Y.: Sub-image anomaly detection with deep pyramid correspondences. arXiv preprint arXiv:2005.02357 (2020)
Company D: 895 fire videos data. https://www.datatang.ai/datasets/92?utm_source=PaperwithCode &utm_medium=dataset
Defard, T., Setkov, A., Loesch, A., Audigier, R.: PaDiM: a patch distribution modeling framework for anomaly detection and localization. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12664, pp. 475–489. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68799-1_35
Dunnings, A.J., Breckon, T.P.: Experimentally defined convolutional neural network architecture variants for non-temporal real-time fire detection. In: 2018 25th IEEE international conference on image processing (ICIP), pp. 1558–1562. IEEE (2018)
Fang, U., Li, M., Li, J., Gao, L., Jia, T., Zhang, Y.: A comprehensive survey on multi-view clustering. IEEE Trans. Knowl. Data Eng. (2023)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Huang, C., Ye, F., Cao, J., Li, M., Zhang, Y., Lu, C.: Attribute restoration framework for anomaly detection. arXiv preprint arXiv:1911.10676 (2019)
Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 510–519 (2019)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Napoletano, P., Piccoli, F., Schettini, R.: Anomaly detection in nanofibrous materials by cnn-based self-similarity. Sensors 18(1), 209 (2018)
Reiss, T., Cohen, N., Horwitz, E., Abutbul, R., Hoshen, Y.: Anomaly detection requires better representations. In: Computer Vision–ECCV 2022 Workshops: Proceedings, Part IV, pp. 56–68. Springer (2023). https://doi.org/10.1007/978-3-031-25069-9_4
Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12
Sharma, J., Granmo, O.C., Goodwin, M., Fidje, J.T.: Deep convolutional neural networks for fire detection in images. In: Engineering Applications of Neural Networks: 18th International Conference, EANN 2017, pp. 183–193. Springer (2017). https://doi.org/10.1007/978-3-319-65172-9_16
Song, X., Li, J., Cai, T., Yang, S., Yang, T., Liu, C.: A survey on deep learning based knowledge tracing. Knowl.-Based Syst. 258, 110036 (2022)
Gustavo Botelho de Sousa, R.d.S.T.: Bowfire. https://bitbucket.org/gbdi/bowfire-dataset/downloads/
Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 843–852 (2017)
Sunkara, R., Luo, T.: No more strided convolutions or pooling: A new cnn building block for low-resolution images and small objects. arXiv preprint arXiv:2208.03641 (2022)
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
University, D.: Fire-dunnings-dataset. https://collections.durham.ac.uk/files/r2d217qp536#.YG_uqsgzqkL
Wang, G., Han, S., Ding, E., Huang, D.: Student-teacher feature pyramid matching for unsupervised anomaly detection. arXiv preprint arXiv:2103.04257 (2021)
Wang, L., Yoon, K.J.: Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks. IEEE Trans. Pattern Analy. Mach. Intell. (2021)
Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: Eca-net: efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11534–11542 (2020)
Wang, Y., Dang, L., Ren, J.: Forest fire image recognition based on convolutional neural network. J. Algorithms Comput. Technol. 13, 1748302619887689 (2019)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Wu, S., Zhang, L.: Using popular object detection methods for real time forest fire detection. In: 2018 11th International Symposium on Computational Intelligence and Design (ISCID), vol. 1, pp. 280–284. IEEE (2018)
Xu, C., Zhao, W., Zhao, J., Guan, Z., Song, X., Li, J.: Uncertainty-aware multiview deep learning for internet of things applications. IEEE Trans. Industr. Inf. 19(2), 1456–1466 (2022)
Zhang, P.F., Luo, Y., Huang, Z., Xu, X.S., Song, J.: High-order nonlocal hashing for unsupervised cross-modal retrieval. World Wide Web 24, 563–583 (2021)
Zhang, Q.x., Lin, G.h., Zhang, Y.m., Xu, G., Wang, J.j.: Wildland forest fire smoke detection based on faster r-cnn using synthetic smoke images. Proc. Eng. 211, 441–446 (2018)
Zhou, X., Delicato, F.C., Wang, K.I.K., Huang, R.: Smart computing and cyber technology for cyberization. World Wide Web 23, 1089–1100 (2020)
Acknowledgement
This work was supported in part by the National Natural Fund Joint Fund Project of China under Grant U21B2041.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Song, H., Wen, Y., Song, X., Sun, S., Cai, T., Li, J. (2024). ECS-STPM: An Efficient Model for Tunnel Fire Anomaly Detection. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14334. Springer, Singapore. https://doi.org/10.1007/978-981-97-2421-5_19
Download citation
DOI: https://doi.org/10.1007/978-981-97-2421-5_19
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-2420-8
Online ISBN: 978-981-97-2421-5
eBook Packages: Computer ScienceComputer Science (R0)