Skip to main content

Tackling Non-IID for Federated Learning with Components Alignment

  • Conference paper
  • First Online:
Machine Learning for Cyber Security (ML4CS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14541))

Included in the following conference series:

  • 36 Accesses

Abstract

Federated Learning (FL) is a privacy-preserving framework used to perform machine learning tasks with distributed data. One of the key challenges is heterogeneous data distributions among clients, which results in client-drift, leading to the oscillatory and low-accuracy global model. Although lots of work has been proposed to mitigate client-drift, we find there are drawbacks associated with the two common methods: feature alignment and classifier tuning. For the former, the great bias in classifiers still holds in local models and degrades global model performance. For the latter, it’s hard to obtain suitable global features to introduce external knowledge to locals. To address the above drawbacks, in this paper, we propose a privacy-preserving and effective method, named FCA, to tackle client-drift issues in Non-IID federated learning via aligning models’ components. Specifically, FCA enhances similarity among the local models’ components, i.e. feature extractors and classifiers, by utilizing the estimated global feature representations. Experimental results demonstrate that FCA achieves better performance with fewer rounds. Compared with vanilla, our method achieves from 0.4% to 7.5% performance improvement on three popular datasets with four different Non-IID scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  2. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  3. Konečnỳ, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527 (2016)

  4. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  5. Kairouz, P., et al.: Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1–2), 1–210 (2021)

    Article  Google Scholar 

  6. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data. arXiv preprint arXiv:1806.00582 (2018)

  7. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold: Stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132–5143. PMLR (2020)

    Google Scholar 

  8. Li, Q., Diao, Y., Chen, Q., He, B.: Federated learning on non-IID data silos: an experimental study. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 965–978. IEEE (2022)

    Google Scholar 

  9. Hao, W., et al.: Towards fair federated learning with zero-shot data augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3310–3319 (2021)

    Google Scholar 

  10. Tang, Z., Zhang, Y., Shi, S., He, X., Han, B., Chu, X.: Virtual homogeneity learning: Defending against data heterogeneity in federated learning. In: International Conference on Machine Learning, pp. 21111–21132. PMLR (2022)

    Google Scholar 

  11. Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.: Communication-efficient on-device machine learning: federated distillation and augmentation under non-IID private data. arXiv preprint arXiv:1811.11479 (2018)

  12. Luo, B., Xiao, W., Wang, S., Huang, J., Tassiulas, L.: Tackling system and statistical heterogeneity for federated learning with adaptive client sampling. In: IEEE INFOCOM 2022-IEEE conference on computer communications, pp. 1739–1748. IEEE (2022)

    Google Scholar 

  13. Li, C., Zeng, X., Zhang, M., Cao, Z.: PyramidFL: a fine-grained client selection framework for efficient federated learning. In: Proceedings of the 28th Annual International Conference on Mobile Computing And Networking, pp. 158–171 (2022)

    Google Scholar 

  14. Ghosh, A., Chung, J., Yin, D., Ramchandran, K.: An efficient framework for clustered federated learning. Adv. Neural. Inf. Process. Syst. 33, 19586–19597 (2020)

    Google Scholar 

  15. Zeng, S., et al.: Heterogeneous federated learning via grouped sequential-to-parallel training. In: Bhattacharya, A., et al. (eds.) Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol. 13246, pp. 455–471. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-00126-0_34

  16. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  17. Lee, G., Jeong, M., Shin, Y., Bae, S., Yun, S.Y.: Preservation of the global knowledge by not-true distillation in federated learning. Adv. Neural. Inf. Process. Syst. 35, 38461–38474 (2022)

    Google Scholar 

  18. Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10713–10722 (2021)

    Google Scholar 

  19. Yu, F., et al.: Fed2: feature-aligned federated learning. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2066–2074 (2021)

    Google Scholar 

  20. Zhu, Z., Hong, J., Zhou, J.: Data-free knowledge distillation for heterogeneous federated learning. In: International Conference on Machine Learning, pp. 12878–12889. PMLR (2021)

    Google Scholar 

  21. Luo, M., Chen, F., Hu, D., Zhang, Y., Liang, J., Feng, J.: No fear of heterogeneity: classifier calibration for federated learning with non-IID data. Adv. Neural. Inf. Process. Syst. 34, 5972–5984 (2021)

    Google Scholar 

  22. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  23. Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  24. Moreno-Torres, J.G., Raeder, T., Alaiz-Rodríguez, R., Chawla, N.V., Herrera, F.: A unifying view on dataset shift in classification. Pattern Recogn. 45(1), 521–530 (2012)

    Article  Google Scholar 

  25. Reynolds, D.A., et al.: Gaussian mixture models. Encycl. Biom. 741, 659–663 (2009)

    Google Scholar 

  26. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  27. Caldas, S., et al.: Leaf: a benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018)

  28. Chang, H., Shejwalkar, V., Shokri, R., Houmansadr, A.: Cronus: robust and heterogeneous collaborative learning with black-box knowledge transfer. arXiv preprint arXiv:1912.11279 (2019)

  29. Huang, W., Ye, M., Du, B.: Learn from others and be yourself in heterogeneous federated learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10143–10153 (2022)

    Google Scholar 

  30. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.E.: Big self-supervised models are strong semi-supervised learners. Adv. Neural. Inf. Process. Syst. 33, 22243–22255 (2020)

    Google Scholar 

  31. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 1–27 (2008)

    Google Scholar 

  32. Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer Science & Business Media, Heidelberg (2008). https://doi.org/10.1007/978-3-540-76917-0

    Book  Google Scholar 

  33. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  34. Hsu, T.M.H., Qi, H., Brown, M.: Measuring the effects of non-identical data distribution for federated visual classification. arXiv preprint arXiv:1909.06335 (2019)

  35. Wang, Z., et al.: Federatedscope-GNN: towards a unified, comprehensive and efficient package for federated graph learning. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4110–4120 (2022)

    Google Scholar 

  36. Graves, A.: Long short-term memory. In: Graves, A. (ed.) Supervised sequence Labelling with Recurrent Neural Networks, vol. 385, pp. 37–45. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24797-2_4

  37. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  38. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in NLP. arXiv preprint arXiv:1906.02243 (2019)

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 62206238), the Natural Science Foundation of Jiangsu Province (No. BK20220562), the Natural Science Research Project of Universities in Jiangsu Province (No. 22KJB520010), the China Postdoctoral Science Foundation (No. 2023M732985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, B., Zhang, J., Chen, B., Li, W. (2024). Tackling Non-IID for Federated Learning with Components Alignment. In: Kim, D.D., Chen, C. (eds) Machine Learning for Cyber Security. ML4CS 2023. Lecture Notes in Computer Science, vol 14541. Springer, Singapore. https://doi.org/10.1007/978-981-97-2458-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2458-1_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2457-4

  • Online ISBN: 978-981-97-2458-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics