Skip to main content

High-Quality PRNU Anonymous Algorithm for JPEG Images

  • Conference paper
  • First Online:
Digital Forensics and Watermarking (IWDW 2023)

Abstract

The utilization of Photo Response Non-Uniformity (PRNU) technology has found extensive application in the field of multimedia forensics, particularly in the authentication of the original camera source of an image. However, this technique has also given rise to significant concerns regarding privacy breaches. For instance, adversaries can exploit publicly available images to generate PRNU and subsequently impersonate the owners of the images. In response to these challenges, we propose an algorithm for achieving source device anonymity in widely used JPEG images. The method combines the discrete cosine transform (DCT) with JPEG compression to process the DCT coefficients of an image after inverse quantization. By ensuring the high quality of the processed image, this approach effectively breaks the link between an image and its source camera. Additionally, a reversible data hiding method is employed, enabling the recovery of traceability if necessary. Our algorithm offers several advantages over existing schemes. It operates within the domain of JPEG image compression, maintaining a low time complexity. Additionally, it effectively preserves the visual quality of images and eliminates the typical traceability effects associated with images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lukas, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1, 205–214 (2006)

    Article  Google Scholar 

  2. Chen, S.-H., Hsu, C.-T.: Source camera identification based on camera gain histogram. In: 2007 IEEE International Conference on Image Processing, pp. IV-429–IV-432 (2007)

    Google Scholar 

  3. Bayram, S., et al.: Source camera identification based on CFA interpolation. In: IEEE International Conference on Image Processing 2005, vol. 3. IEEE (2005)

    Google Scholar 

  4. Zhao, X., Stamm, M.C.: Computationally efficient demosaicing filter estimation for forensic camera model identification. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 151–155 (2016)

    Google Scholar 

  5. Kirchner, M., Gloe, T.: Forensic camera model identification. In: Handbook of Digital Forensics of Multimedia Data and Devices, pp. 329–374. Wiley (2015)

    Google Scholar 

  6. Goljan, M., Fridrich, J., Mo, C.: Defending against fingerprint-copy attack in sensor-based camera identification. IEEE Trans. Inf. Forensics Secur. 6, 227–236 (2011)

    Article  Google Scholar 

  7. Goljan, M., Fridrich, J.J., Mo, C.: Sensor Noise Camera Identification: Countering Counter-Forensics. International Society for Optics and Photonics (2010)

    Google Scholar 

  8. Nagaraja, S., Schaffer, P., Aouada, D.: Who clicks there!: anonymising the photographer in a camera saturated society. In: Proceedings of the 10th Annual ACM Workshop on Privacy in the Electronic Society - WPES 2011, Chicago, Illinois, USA, p. 13. ACM Press (2011)

    Google Scholar 

  9. Böhme, R., Kirchner, M.: Counter-forensics: attacking image forensics. In: Sencar, H., Memon, N. (eds.) Digital Image Forensics, pp. 327–366. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0757-7_12

    Chapter  Google Scholar 

  10. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data minimization: anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity management (2010)

    Google Scholar 

  11. Rosenfeld, K., Sencar, H.T.: A study of the robustness of PRNU-based camera identification. In: Media Forensics and Security, pp. 213–219. SPIE (2009)

    Google Scholar 

  12. Bernacki, J.: On robustness of camera identification algorithms. Multimedia Tools Appl. 80, 921–942 (2021)

    Article  Google Scholar 

  13. Chen, M., Fridrich, J., Goljan, M.: Digital imaging sensor identification (further study). In: Security, Steganography, and Watermarking of Multimedia Contents IX, pp. 258–270. SPIE (2007)

    Google Scholar 

  14. Mandelli, S., Bondi, L., Lameri, S., Lipari, V., Bestagini, P., Tubaro, S.: Inpainting-based camera anonymization. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1522–1526 (2017)

    Google Scholar 

  15. Dirik, A.E., Karaküçük, A.: Forensic use of photo response non-uniformity of imaging sensors and a counter method. Opt. Express 22, 470–482 (2014)

    Article  Google Scholar 

  16. Bonettini, N., et al.: Fooling PRNU-based detectors through convolutional neural networks. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 957–961 (2018)

    Google Scholar 

  17. Dirik, A.E., Sencar, H.T., Memon, N.: Analysis of seam-carving-based anonymization of images against PRNU noise pattern-based source attribution. IEEE Trans. Inf. Forensics Secur. 9, 2277–2290 (2014)

    Article  Google Scholar 

  18. Zeng, H., Chen, J., Kang, X., Zeng, W.: Removing camera fingerprint to disguise photograph source. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 1687–1691 (2015)

    Google Scholar 

  19. Entrieri, J., Kirchner, M.: Patch-based desynchronization of digital camera sensor fingerprints. Electron. Imaging 28, 1–9 (2016)

    Article  Google Scholar 

  20. García Villalba, L.J., Sandoval Orozco, A.L., Rosales Corripio, J., Hernandez-Castro, J.: A PRNU-based counter-forensic method to manipulate smartphone image source identification techniques. Future Gener. Comput. Syst. 76, 418–427 (2017)

    Article  Google Scholar 

  21. Banerjee, S., Ross, A.: Smartphone camera de-identification while preserving biometric utility. In: 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–10 (2019)

    Google Scholar 

  22. Picetti, F., Mandelli, S., Bestagini, P., Lipari, V., Tubaro, S.: DIPPAS: a deep image prior PRNU anonymization scheme. EURASIP J. Inf. Secur. 2022, 2 (2022)

    Article  Google Scholar 

  23. Gloe, T., Böhme, R.: The “Dresden Image Database” for benchmarking digital image forensics. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1584–1590. Association for Computing Machinery, New York (2010)

    Google Scholar 

  24. De Marsico, M., Nappi, M., Narducci, F., Proença, H.: Insights into the results of MICHE I - mobile iris challenge evaluation. Pattern Recogn. 74, 286–304 (2017)

    Article  Google Scholar 

  25. Chen, M., Fridrich, J., Goljan, M., Lukas, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3, 74–90 (2008)

    Article  Google Scholar 

  26. Goljan, M., Fridrich, J., Filler, T.: Large scale test of sensor fingerprint camera identification. In: Media Forensics and Security, pp. 170–181. SPIE (2009)

    Google Scholar 

  27. Debiasi, L., Uhl, A.: Techniques for a forensic analysis of the CASIA-IRIS V4 database. In: 3rd International Workshop on Biometrics and Forensics (IWBF 2015), pp. 1–6 (2015)

    Google Scholar 

  28. Debiasi, L., Uhl, A., Sun, Z.: Generation of iris sensor PRNU fingerprints from uncorrelated data. In: 2nd International Workshop on Biometrics and Forensics, pp. 1–6 (2014)

    Google Scholar 

  29. Ma, B., Shi, Y.Q.: A reversible data hiding scheme based on code division multiplexing. IEEE Trans. Inf. Forensics Secur. 11, 1914–1927 (2016)

    Article  Google Scholar 

  30. Galdi, C., Nappi, M., Dugelay, J.-L.: Multimodal authentication on smartphones: combining iris and sensor recognition for a double check of user identity. Pattern Recogn. Lett. 82, 144–153 (2016)

    Article  Google Scholar 

  31. Kang, X., Li, Y., Qu, Z., Huang, J.: Enhancing source camera identification performance with a camera reference phase sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 7, 393–402 (2012)

    Article  Google Scholar 

  32. ImageNet: A large-scale hierarchical image database. IEEE Conference Publication. IEEE Xplore. https://ieeexplore.ieee.org/document/5206848

  33. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. Presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  34. Hernandez-Diaz, K., Alonso-Fernandez, F., Bigun, J.: Periocular recognition using CNN features off-the-shelf. In: 2018 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–5 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (62272255, 62302248, 62302249); National key research and development program of China (2021YFC3340600, 2021YFC3340602); Taishan Scholar Program of Shandong (tsqn202306251); Jinan “New 20 Universities”-Project of Introducing Innovation Team (202228016); The “Chunhui Plan” Cooperative Scientific Research Project of Ministry of Education (HZKY20220482); First Talent Research Project under Grant (2023RCKY131, 2023RCKY143), Integration Pilot Project of Science Education Industry under Grant (2023PX006, 2023PY060, 2023PX071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J. et al. (2024). High-Quality PRNU Anonymous Algorithm for JPEG Images. In: Ma, B., Li, J., Li, Q. (eds) Digital Forensics and Watermarking. IWDW 2023. Lecture Notes in Computer Science, vol 14511. Springer, Singapore. https://doi.org/10.1007/978-981-97-2585-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2585-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2584-7

  • Online ISBN: 978-981-97-2585-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics