Skip to main content

DNA Steganalysis Based on Multi-dimensional Feature Extraction and Fusion

  • Conference paper
  • First Online:
Digital Forensics and Watermarking (IWDW 2023)

Abstract

Steganalysis, as an adversarial technique to steganography, aims to uncover potential concealed information transmission, holding significant research implications and value in maintaining societal peace and stability. With the rapid development and application of DNA synthesis technology, an increasing number of information hiding technologies based on DNA synthesis have emerged in recent years. DNA, as a natural information carrier, boasts advantages such as high information density, robustness, and strong imperceptibility, making it a challenging target for existing steganalysis technologies to efficiently detect. This paper proposes a DNA steganalysis technique that integrates multi-dimensional features. It extracts short-distance and long-distance related features from the DNA long chain separately and then employs ensemble learning for feature fusion and discrimination. Experiments have shown that this method can effectively enhance the detection capability against the latest DNA steganography technologies. We hope that this work will contribute to inspiring more research on DNA-oriented steganography and steganalysis technologies in the future.

Z. Wang, J. Xia and K. Huang—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.ebi.ac.uk/.

References

  1. Arita, M.: Comma-free design for DNA words. Commun. ACM 47(5), 99–100 (2004)

    Article  Google Scholar 

  2. Bae, H., Min, S., Choi, H.S., Yoon, S.: DNA privacy: analyzing malicious DNA sequences using deep neural networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 19(2), 888–898 (2020)

    Google Scholar 

  3. Beck, M.B., Desoky, A.H., Rouchka, E.C., Yampolskiy, R.V.: Decoding methods for DNA steganalysis. In: 6th International Conference on Bioinformatics and Computational Biology (BICoB) (2014)

    Google Scholar 

  4. Beck, M.B.: A forensics software toolkit for DNA steganalysis (2015)

    Google Scholar 

  5. Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: a system for anonymous and unobservable internet access. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009, pp. 115–129. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44702-4_7

    Chapter  Google Scholar 

  6. Bornholt, J., Lopez, R., Carmean, D.M., Ceze, L., Seelig, G., Strauss, K.: A DNA-based archival storage system. In: Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 637–649 (2016)

    Google Scholar 

  7. Chun, J.Y., Lee, H.L., Yoon, J.W.: Passing go with DNA sequencing: delivering messages in a covert transgenic channel. In: 2015 IEEE Security and Privacy Workshops, pp. 17–26. IEEE (2015)

    Google Scholar 

  8. Clelland, C.T., Risca, V., Bancroft, C.: Hiding messages in DNA microdots. Nature 399(6736), 533–534 (1999)

    Article  Google Scholar 

  9. Danezis, G.: Statistical disclosure attacks: traffic confirmation in open environments. In: Gritzalis, D., De Capitani di Vimercati, S., Samarati, P., Katsikas, S. (eds.) SEC 2003. IFIPAICT, vol. 122, pp. 421–426. Springer, Boston (2003). https://doi.org/10.1007/978-0-387-35691-4_40

    Chapter  Google Scholar 

  10. Guo, C., Chang, C.C., Wang, Z.H.: A new data hiding scheme based on DNA sequence. Int. J. Innov. Comput. Inf. Control 8(1), 139–149 (2012)

    Google Scholar 

  11. Haughton, D., Balado, F.: BioCode: two biologically compatible algorithms for embedding data in non-coding and coding regions of DNA. BMC Bioinform. 14(1), 1–16 (2013)

    Article  Google Scholar 

  12. Huang, C., et al.: DNA synthetic steganography based on conditional probability adaptive coding. IEEE Trans. Inf. Forensics Secur. 18, 4747–4759 (2023)

    Article  Google Scholar 

  13. Huang, Y.F., Tang, S., Yuan, J.: Steganography in inactive frames of VoIP streams encoded by source codec. IEEE Trans. Inf. Forensics Secur. 6(2), 296–306 (2011)

    Article  Google Scholar 

  14. Ivanova, N.V., Kuzmina, M.L.: Protocols for dry DNA storage and shipment at room temperature. Mol. Ecol. Resour. 13(5), 890–898 (2013)

    Article  Google Scholar 

  15. Khalifa, A., Atito, A.: High-capacity DNA-based steganography. In: 2012 8th International Conference on Informatics and Systems (INFOS), p. BIO-76. IEEE (2012)

    Google Scholar 

  16. Khalifa, A., Elhadad, A., Hamad, S.: Secure blind data hiding into pseudo DNA sequences using playfair ciphering and generic complementary substitution. Appl. Math. 10(4), 1483–1492 (2016)

    Google Scholar 

  17. Kim, Y.: Convolutional neural networks for sentence classification, pp. 1746–1751 (2014). https://doi.org/10.3115/v1/D14-1181. https://aclanthology.org/D14-1181

  18. Sarkar, A., Madhow, U., Manjunath, B.: Matrix embedding with pseudorandom coefficient selection and error correction for robust and secure steganography. IEEE Trans. Inf. Forensics Secur. 5(2), 225–239 (2010)

    Article  Google Scholar 

  19. Tang, W., Li, B., Tan, S., Barni, M., Huang, J.: CNN-based adversarial embedding for image steganography. IEEE Trans. Inf. Forensics Secur. 14(8), 2074–2087 (2019)

    Article  Google Scholar 

  20. Taur, J.S., Lin, H.Y., Lee, H.L., Tao, C.W.: Data hiding in DNA sequences based on table lookup substitution. Int. J. Innov. Comput. Inf. Control 8(10), 6585–6598 (2012)

    Google Scholar 

  21. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  22. Wiseman, S.: Stegware–using steganography for malicious purposes (2017)

    Google Scholar 

  23. Yang, Z.L., Zhang, S.Y., Hu, Y.T., Hu, Z.W., Huang, Y.F.: VAE-Stega: linguistic steganography based on variational auto-encoder. IEEE Trans. Inf. Forensics Secur. 16, 880–895 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Key Research and Development Program of China under Grant 2022YFC3303301 and in part by the National Natural Science Foundation of China under Grant 62172053 and Grant 62302059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongliang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z. et al. (2024). DNA Steganalysis Based on Multi-dimensional Feature Extraction and Fusion. In: Ma, B., Li, J., Li, Q. (eds) Digital Forensics and Watermarking. IWDW 2023. Lecture Notes in Computer Science, vol 14511. Springer, Singapore. https://doi.org/10.1007/978-981-97-2585-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2585-4_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2584-7

  • Online ISBN: 978-981-97-2585-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics