Skip to main content

DyAdapTransformer: Dynamic Adaptive Spatial-Temporal Graph Transformer for Traffic Prediction

  • Conference paper
  • First Online:
Spatial Data and Intelligence (SpatialDI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14619))

Included in the following conference series:

  • 65 Accesses

Abstract

The transformer-based method is a popular choice for medium and long-term traffic prediction. However, it still suffers from some problems. The first is that spatial position embedding has poor interpretability. Additionally, the spatial-temporal correlation learning can struggle to reflect the actual complexity of traffic networks relationships. To address the above problems, we propose a traffic prediction framework for dynamic adaptive spatial-temporal graph transformer (DyAdapTransformer). Our method uses the method of random walk to embed the spatial position. The analyzability between transition probability and spatial position representation enhances the interpretability of the model. When learning spatial-temporal correlation, a method of dynamic adaptive graph attention network is proposed. We compared with our framework with four baselines on three datasets. The results show that DyAdapTransformer has a better predictive performance.

Hui Dong is currently pursuing the Ph.D. degree in the School of Management, Shijiazhuang Tiedao University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Y., Jing, C.: Spatiotemporal graph convolutional network for multi-scale traffic forecasting. ISPRS Int. J. Geo Inf. 11(2), 102 (2022)

    Article  Google Scholar 

  2. Shin, Y., Yoon, Y.: PGCN: progressive graph convolutional networks for spatial-temporal traffic forecasting. arXiv preprint arXiv:2202.08982 (2022)

  3. Djenouri, Y., Belhadi, A., Srivastava, G., et al.: Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting. Futur. Gener. Comput. Syst. 139, 100–108 (2023)

    Article  Google Scholar 

  4. Ali, A., Zhu, Y., Zakarya, M.: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction. Neural Netw. 145, 233–247 (2022)

    Article  Google Scholar 

  5. Zhao, L., Song, Y., Zhang, C., et al.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848–3858 (2019)

    Article  Google Scholar 

  6. Chen, C., Li, K., Teo, S.G., et al.: Gated residual recurrent graph neural networks for traffic prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 485–492 (2019)

    Google Scholar 

  7. Ye, J., Zhao, J., Ye, K., et al.: Multi-STGCnet: a graph convolution based spatial-temporal framework for subway passenger flow forecasting. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  8. Bai, L., Yao, L., Li, C., et al.: Adaptive graph convolutional recurrent network for traffic forecasting. Adv. Neural. Inf. Process. Syst. 33, 17804–17815 (2020)

    Google Scholar 

  9. Li, Y., Yu, R., Shahabi, C., et al.: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

  10. Huang, R., Huang, C., Liu, Y., et al.: LSGCN: long short-term traffic prediction with graph convolutional networks. In: IJCAI, vol. 7, pp. 2355–2361 (2020)

    Google Scholar 

  11. Khaled, A., Elsir, A.M.T., Shen, Y.: TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network. Knowl.-Based Syst. 249, 108990 (2022)

    Article  Google Scholar 

  12. Chen, L., Shao, W., Lv, M., et al.: AARGNN: an attentive attributed recurrent graph neural network for traffic flow prediction considering multiple dynamic factors. IEEE Trans. Intell. Transp. Syst. 23(10), 17201–17211 (2022)

    Article  Google Scholar 

  13. Li, M., Zhu, Z.: Spatial-temporal fusion graph neural networks for traffic flow forecasting. In: Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 5, pp. 4189–4196 (2021)

    Google Scholar 

  14. Wu, Z., Pan, S., Long, G., et al.: Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)

  15. Song, C., Lin, Y., Guo, S., et al.: Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 914–921 (2020)

    Google Scholar 

  16. Wang, Y., Fang, S., Zhang, C., et al.: TVGCN: Time-variant graph convolutional network for traffic forecasting. Neurocomputing 471, 118–129 (2022)

    Article  Google Scholar 

  17. Guo, G., Yuan, W., Liu, J., et al.: Traffic forecasting via dilated temporal convolution with peak-sensitive loss. IEEE Intell. Transp. Syst. Mag. 15(1) (2023)

    Google Scholar 

  18. Guo, S., Lin, Y., Wan, H., et al.: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans. Knowl. Data Eng. 34(11), 5415–5428 (2021)

    Article  Google Scholar 

  19. Ye, X., Fang, S., Sun, F., et al.: Meta graph transformer: a novel framework for spatial–temporal traffic prediction. Neurocomputing 491, 544–563 (2022)

    Article  Google Scholar 

  20. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

    Google Scholar 

  21. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv. Neural Inf. Process. Syst. 14 (2001)

    Google Scholar 

  22. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  23. Xu, M., Dai, W., Liu, C., et al.: Spatial-temporal transformer networks for traffic flow forecasting. arXiv preprint arXiv:2001.02908 (2020)

  24. Cai, L., Janowicz, K., Mai, G., et al.: Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting. Trans. GIS 24(3), 736–755 (2020)

    Article  Google Scholar 

  25. Li, G., Zhong, S., Deng, X., et al.: A lightweight and accurate spatial-temporal transformer for traffic forecasting. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  26. Chen, K., Chen, G., Xu, D., et al.: NAST: non-aut oregressive spatial-temporal transformer for time series forecasting. arXiv preprint arXiv:2102.05624 (2021)

  27. Bogaerts, T., Masegosa, A.D., Angarita-Zapata, J.S., et al.: A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data. Transp. Res. Part C: Emerg. Technol. 112, 62–77 (2020)

    Article  Google Scholar 

  28. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  29. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  30. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  31. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  32. Liu, L., Chen, J., Wu, H., et al.: Physical-virtual collaboration modeling for intra-and inter-station metro ridership prediction. IEEE Trans. Intell. Transp. Syst. 23(4), 3377–3391 (2020)

    Article  Google Scholar 

  33. Chen, C., Petty, K., Skabardonis, A., et al.: Freeway performance measurement system: mining loop detector data. Transp. Res. Rec. 1748(1), 96–102 (2001)

    Article  Google Scholar 

  34. Paszke, A., Gross, S., Massa, F., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  35. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of Hebei Province under Grant F2021210005 and F2023407003; in part by the Outstanding Youth Foundation of Hebei Education Department under Grant BJ2021085; in part by the Postgraduate Innovation Foundation of Hebei under Grant CXZZBS2022117; in part by the Key Laboratory of Marine Dynamic Process and Resources and Environment Open Course of Hebei Province under Grant HBHY02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, H., Pan, X., Chen, X., Sun, J., Wang, S. (2024). DyAdapTransformer: Dynamic Adaptive Spatial-Temporal Graph Transformer for Traffic Prediction. In: Meng, X., Zhang, X., Guo, D., Hu, D., Zheng, B., Zhang, C. (eds) Spatial Data and Intelligence. SpatialDI 2024. Lecture Notes in Computer Science, vol 14619. Springer, Singapore. https://doi.org/10.1007/978-981-97-2966-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2966-1_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2965-4

  • Online ISBN: 978-981-97-2966-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics