Skip to main content

MADB-RemdNet for Few-Shot Learning in Remote Sensing Classification

  • Conference paper
  • First Online:
Spatial Data and Intelligence (SpatialDI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14619))

Included in the following conference series:

  • 53 Accesses

Abstract

The problem of small sample classification is to identify image categories that have not appeared in the training concentration when marking the scarce sample samples of the training data set. Such tasks are of great significance in the recognition of remote sensing scenarios. It is a problem worth studying in this field. As we all know, training a deep learning model for classification requires a considerable labeling data set, which makes the production of training data sets huge. In this article, we propose a MADB feature extraction model based on Mixed Attention Module as a base model to extract features. Using RccaEMD module as the measurement algorithm to distinguish the classification of remote sensing scenarios. In NWPU-RESISC45 dataset, AID dataset, and UC-Merced dataset, it proves that our method has achieved higher accuracy than the current advanced methods of this field.

This work is supported by the National Key R&D Program of China under Grant 2022YFF0503900.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu, Q., et al.: Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping. Remote Sens. 5(11), 6026–6042 (2013)

    Article  Google Scholar 

  2. Gómez-Chova, L., Tuia, D., Moser, G., Camps-Valls, G.: Multimodal classification of remote sensing images: a review and future directions. Proc. IEEE 103(9), 1560–1584 (2015)

    Article  Google Scholar 

  3. Hu, F., Xia, G.S., Hu, J., Zhang, L.: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7(11), 14680–14707 (2015)

    Article  Google Scholar 

  4. Chaib, S., Liu, H., Gu, Y., Yao, H.: Deep feature fusion for VHR remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 55(8), 4775–4784 (2017)

    Article  Google Scholar 

  5. Li, E., Xia, J., Du, P., Lin, C., Samat, A.: Integrating multilayer features of convolutional neural networks for remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 55(10), 5653–5665 (2017)

    Article  Google Scholar 

  6. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017 (2017)

    Google Scholar 

  7. Li, Z., Zhou, F., Chen, F., Li, H.: Meta-SGD: learning to learn quickly for few shot learning. arXiv (2017). arXiv:1707.09835

  8. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In: Proceedings of the International Conference on Neural Information Processing Systems, Long Beach, CA, USA, pp. 4077–4087 (2017)

    Google Scholar 

  9. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015, vol. 2 (2015)

    Google Scholar 

  10. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA 18–23 June 2018, pp. 1199–1208 (2018)

    Google Scholar 

  11. Sharma, S., Roscher, R., Riedel, M., Memon, S., Cavallaro, G.: Improving generalization for few-shot remote sensing classification with meta-learning. In: 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022, Kuala Lumpur, Malaysia, pp. 5061–5064 (2022). https://doi.org/10.1109/IGARSS46834.2022.9884699.

  12. Yang, Q., Yang, X., Ji, X.: NAM net: meta-network with normalization-based attention for few-shot learning. In: 2022 2nd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI), Nanjing, China, pp. 473–476 (2022). https://doi.org/10.1109/CEI57409.2022.9950152

  13. Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105(10), 1865–1883 (2017)

    Article  Google Scholar 

  14. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS), pp. 270–279 (2010)

    Google Scholar 

  15. Xia, G.-S., et al.: AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3965–3981 (2017)

    Article  Google Scholar 

  16. Chen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C., Huang, J.-B.: A closer look at few-shot classification. In: Proceedings of the International Conference on Learning Representations, pp. 1–16 (2019)

    Google Scholar 

  17. Chen, Y., Liu, Z., Xu, H., Darrell, T., Wang, X.: Meta-baseline: exploring simple meta-learning for few-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9062–9071 (2021)

    Google Scholar 

  18. Mangla, P., Singh, M., Sinha, A., Kumari, N., Balasubramanian, V.N., Krishnamurthy, B.: Charting the right manifold: manifold mixup for few-shot learning. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2218–2227 (2020)

    Google Scholar 

  19. Ouali, Y., Hudelot, C., Tami, M.: Spatial contrastive learning for few-shot classification. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS, vol. 12975, pp. 671–686. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86486-6_41

    Chapter  Google Scholar 

  20. Vinyals, O., Blundell, C., Lillicrap, T., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  21. Pan, X., et al.: Dynamic refinement network for oriented and densely packed object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020, pp. 11207–11216 (2020)

    Google Scholar 

  22. Dosovitskiy, A., et al.: An image is worth \(16\times 16\) words: transformers for image recognition at scale. arXiv (2020). arXiv:2010.11929

  23. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv (2020). arXiv:2010.04159

  24. Cao, R., Fang, L., Lu, T., He, N.: Self-attention-based deep feature fusion for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 18, 43–47 (2021)

    Article  Google Scholar 

  25. Tao, A., Sapra, K., Catanzaro, B.: Hierarchical multi-scale attention for semantic segmentation. arXiv (2020). arXiv:2005.10821

  26. Huang, Z., Wang, X., Huang, L., et al.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 603–612 (2019)

    Google Scholar 

  27. Yang, L., Zhang, R.Y., Li, L., et al.: SimAM: a simple, parameter-free attention module for convolutional neural networks. In: International Conference on Machine Learning, pp. 11863–11874. PMLR (2021)

    Google Scholar 

  28. Wang, Y., Chao, W.L., Weinberger, K.Q., et al.: Simpleshot: revisiting nearest-neighbor classification for few-shot learning. arXiv preprint arXiv:1911.04623 (2019)

  29. Cheng, G., et al.: SPNet: Siamese-prototype network for few-shot remote sensing image scene classification. IEEE Trans. Geosci. Remote Sens. 60, 1–11 (2022)

    Google Scholar 

  30. Ji, H., Gao, Z., Zhang, Y., Wan, Y., Li, C., Mei, T.: Few-shot scene classification of optical remote sensing images leveraging calibrated pretext tasks. IEEE Trans. Geosci. Remote Sens. 60, 1–13, Article no. 5625513 (2022). https://doi.org/10.1109/TGRS.2022.3184080

  31. Li, X., Pu, F., Yang, R., et al.: AMN: attention metric network for one-shot remote sensing image scene classification. Remote Sens. 12(24), 4046 (2020)

    Article  Google Scholar 

  32. Zhai, M., Liu, H., Sun, F.: Lifelong learning for scene recognition in remote sensing images. IEEE Geosci. Remote Sens. Lett. 16(9), 1472–1476 (2019). https://doi.org/10.1109/LGRS.2019.2897652

    Article  Google Scholar 

  33. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  34. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  35. Fu, J., Liu, J., Tian, H., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  36. Zhang, C., Cai, Y., Lin, G., et al.: DeepEMD: differentiable earth mover’s distance for few-shot learning. IEEE Trans. Pattern Anal. Mach. Intell. 45(5), 5632–5648 (2022)

    Google Scholar 

  37. Li, Z., Zhou, F., Chen, F., et al.: Meta-SGD: learning to learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835 (2017)

  38. Zhai, M., Liu, H., Sun, F.: Lifelong learning for scene recognition in remote sensing images. IEEE Geosci. Remote Sens. Lett. 16(9), 1472–1476 (2019)

    Article  Google Scholar 

  39. Li, L., Han, J., Yao, X., et al.: DLA-MatchNet for few-shot remote sensing image scene classification. IEEE Trans. Geosci. Remote Sens. 59(9), 7844–7853 (2020)

    Article  Google Scholar 

  40. Li, X., Shi, D., Diao, X., et al.: SCL-MLNet: boosting few-shot remote sensing scene classification via self-supervised contrastive learning. IEEE Trans. Geosci. Remote Sens. 60, 1–12 (2021)

    Google Scholar 

  41. Ji, H., Gao, Z., Zhang, Y., et al.: Few-shot scene classification of optical remote sensing images leveraging calibrated pretext tasks. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, K., Wang, Y., Ding, Z. (2024). MADB-RemdNet for Few-Shot Learning in Remote Sensing Classification. In: Meng, X., Zhang, X., Guo, D., Hu, D., Zheng, B., Zhang, C. (eds) Spatial Data and Intelligence. SpatialDI 2024. Lecture Notes in Computer Science, vol 14619. Springer, Singapore. https://doi.org/10.1007/978-981-97-2966-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2966-1_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2965-4

  • Online ISBN: 978-981-97-2966-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics