Abstract
The problem of small sample classification is to identify image categories that have not appeared in the training concentration when marking the scarce sample samples of the training data set. Such tasks are of great significance in the recognition of remote sensing scenarios. It is a problem worth studying in this field. As we all know, training a deep learning model for classification requires a considerable labeling data set, which makes the production of training data sets huge. In this article, we propose a MADB feature extraction model based on Mixed Attention Module as a base model to extract features. Using RccaEMD module as the measurement algorithm to distinguish the classification of remote sensing scenarios. In NWPU-RESISC45 dataset, AID dataset, and UC-Merced dataset, it proves that our method has achieved higher accuracy than the current advanced methods of this field.
This work is supported by the National Key R&D Program of China under Grant 2022YFF0503900.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hu, Q., et al.: Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping. Remote Sens. 5(11), 6026–6042 (2013)
Gómez-Chova, L., Tuia, D., Moser, G., Camps-Valls, G.: Multimodal classification of remote sensing images: a review and future directions. Proc. IEEE 103(9), 1560–1584 (2015)
Hu, F., Xia, G.S., Hu, J., Zhang, L.: Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7(11), 14680–14707 (2015)
Chaib, S., Liu, H., Gu, Y., Yao, H.: Deep feature fusion for VHR remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 55(8), 4775–4784 (2017)
Li, E., Xia, J., Du, P., Lin, C., Samat, A.: Integrating multilayer features of convolutional neural networks for remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 55(10), 5653–5665 (2017)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017 (2017)
Li, Z., Zhou, F., Chen, F., Li, H.: Meta-SGD: learning to learn quickly for few shot learning. arXiv (2017). arXiv:1707.09835
Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In: Proceedings of the International Conference on Neural Information Processing Systems, Long Beach, CA, USA, pp. 4077–4087 (2017)
Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015, vol. 2 (2015)
Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA 18–23 June 2018, pp. 1199–1208 (2018)
Sharma, S., Roscher, R., Riedel, M., Memon, S., Cavallaro, G.: Improving generalization for few-shot remote sensing classification with meta-learning. In: 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022, Kuala Lumpur, Malaysia, pp. 5061–5064 (2022). https://doi.org/10.1109/IGARSS46834.2022.9884699.
Yang, Q., Yang, X., Ji, X.: NAM net: meta-network with normalization-based attention for few-shot learning. In: 2022 2nd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI), Nanjing, China, pp. 473–476 (2022). https://doi.org/10.1109/CEI57409.2022.9950152
Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105(10), 1865–1883 (2017)
Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS), pp. 270–279 (2010)
Xia, G.-S., et al.: AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3965–3981 (2017)
Chen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C., Huang, J.-B.: A closer look at few-shot classification. In: Proceedings of the International Conference on Learning Representations, pp. 1–16 (2019)
Chen, Y., Liu, Z., Xu, H., Darrell, T., Wang, X.: Meta-baseline: exploring simple meta-learning for few-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9062–9071 (2021)
Mangla, P., Singh, M., Sinha, A., Kumari, N., Balasubramanian, V.N., Krishnamurthy, B.: Charting the right manifold: manifold mixup for few-shot learning. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2218–2227 (2020)
Ouali, Y., Hudelot, C., Tami, M.: Spatial contrastive learning for few-shot classification. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS, vol. 12975, pp. 671–686. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86486-6_41
Vinyals, O., Blundell, C., Lillicrap, T., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Pan, X., et al.: Dynamic refinement network for oriented and densely packed object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020, pp. 11207–11216 (2020)
Dosovitskiy, A., et al.: An image is worth \(16\times 16\) words: transformers for image recognition at scale. arXiv (2020). arXiv:2010.11929
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv (2020). arXiv:2010.04159
Cao, R., Fang, L., Lu, T., He, N.: Self-attention-based deep feature fusion for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 18, 43–47 (2021)
Tao, A., Sapra, K., Catanzaro, B.: Hierarchical multi-scale attention for semantic segmentation. arXiv (2020). arXiv:2005.10821
Huang, Z., Wang, X., Huang, L., et al.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 603–612 (2019)
Yang, L., Zhang, R.Y., Li, L., et al.: SimAM: a simple, parameter-free attention module for convolutional neural networks. In: International Conference on Machine Learning, pp. 11863–11874. PMLR (2021)
Wang, Y., Chao, W.L., Weinberger, K.Q., et al.: Simpleshot: revisiting nearest-neighbor classification for few-shot learning. arXiv preprint arXiv:1911.04623 (2019)
Cheng, G., et al.: SPNet: Siamese-prototype network for few-shot remote sensing image scene classification. IEEE Trans. Geosci. Remote Sens. 60, 1–11 (2022)
Ji, H., Gao, Z., Zhang, Y., Wan, Y., Li, C., Mei, T.: Few-shot scene classification of optical remote sensing images leveraging calibrated pretext tasks. IEEE Trans. Geosci. Remote Sens. 60, 1–13, Article no. 5625513 (2022). https://doi.org/10.1109/TGRS.2022.3184080
Li, X., Pu, F., Yang, R., et al.: AMN: attention metric network for one-shot remote sensing image scene classification. Remote Sens. 12(24), 4046 (2020)
Zhai, M., Liu, H., Sun, F.: Lifelong learning for scene recognition in remote sensing images. IEEE Geosci. Remote Sens. Lett. 16(9), 1472–1476 (2019). https://doi.org/10.1109/LGRS.2019.2897652
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Fu, J., Liu, J., Tian, H., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)
Zhang, C., Cai, Y., Lin, G., et al.: DeepEMD: differentiable earth mover’s distance for few-shot learning. IEEE Trans. Pattern Anal. Mach. Intell. 45(5), 5632–5648 (2022)
Li, Z., Zhou, F., Chen, F., et al.: Meta-SGD: learning to learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835 (2017)
Zhai, M., Liu, H., Sun, F.: Lifelong learning for scene recognition in remote sensing images. IEEE Geosci. Remote Sens. Lett. 16(9), 1472–1476 (2019)
Li, L., Han, J., Yao, X., et al.: DLA-MatchNet for few-shot remote sensing image scene classification. IEEE Trans. Geosci. Remote Sens. 59(9), 7844–7853 (2020)
Li, X., Shi, D., Diao, X., et al.: SCL-MLNet: boosting few-shot remote sensing scene classification via self-supervised contrastive learning. IEEE Trans. Geosci. Remote Sens. 60, 1–12 (2021)
Ji, H., Gao, Z., Zhang, Y., et al.: Few-shot scene classification of optical remote sensing images leveraging calibrated pretext tasks. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, K., Wang, Y., Ding, Z. (2024). MADB-RemdNet for Few-Shot Learning in Remote Sensing Classification. In: Meng, X., Zhang, X., Guo, D., Hu, D., Zheng, B., Zhang, C. (eds) Spatial Data and Intelligence. SpatialDI 2024. Lecture Notes in Computer Science, vol 14619. Springer, Singapore. https://doi.org/10.1007/978-981-97-2966-1_19
Download citation
DOI: https://doi.org/10.1007/978-981-97-2966-1_19
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-2965-4
Online ISBN: 978-981-97-2966-1
eBook Packages: Computer ScienceComputer Science (R0)