Abstract
With the emergence of a large number of remote sensing data sources, how to effectively use the useful information in multi-source data for better earth observation has become an interesting but challenging problem. In this paper, the deep learning method is used to study the joint classification of hyperspectral imagery (HSI) and light detection and ranging (LiDAR) data. The network proposed in this paper is named convolutional neural network based on multiple attention mechanisms (MatNet). Specifically, a convolutional neural network (CNN) with an attention mechanism is used to extract the deep features of HSI and LiDAR respectively. Then the obtained features are introduced into the dual-branch cross-attention fusion module (DCFM) to fuse the information in HSI and LiDAR data effectively. Finally, the obtained features are introduced into the classification module to obtain the final classification results. Experimental results show that our proposed network can achieve better classification performance than existing methods.
This work is supported by the National Key R &D Program of China under Grant 2022YFF0503900.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2019). https://doi.org/10.1109/TPAMI.2018.2798607
Bartholomé, E., Belward, A.: GLC 2000: a new approach to global land cover mapping from earth observation data. Int. J. Remote Sens. 26, 1959–1977 (2005). https://doi.org/10.1080/01431160412331291297
Chen, Y., et al.: Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3434–3443 (2019). https://doi.org/10.1109/ICCV.2019.00353
Cheng, G., Yang, C., Yao, X., Guo, L., Han, J.: When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 56(5), 2811–2821 (2018). https://doi.org/10.1109/TGRS.2017.2783902
Debes, C., et al.: Hyperspectral and lidar data fusion: Outcome of the 2013 GRSS data fusion contest. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7 (2014). https://doi.org/10.1109/JSTARS.2014.2305441
Hong, D., Gao, L., Hang, R., Zhang, B., Chanussot, J.: Deep encoder-decoder networks for classification of hyperspectral and lidar data. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022). https://doi.org/10.1109/LGRS.2020.3017414
Hong, D., et al.: More diverse means better: multimodal deep learning meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 59(5), 4340–4354 (2021). https://doi.org/10.1109/TGRS.2020.3016820
Huang, R., Hong, D., Xu, Y., Yao, W., Stilla, U.: Multi-scale local context embedding for lidar point cloud classification. IEEE Geosci. Remote Sens. Lett. 17(4), 721–725 (2020). https://doi.org/10.1109/LGRS.2019.2927779
Kang, J., Hong, D., Liu, J., Baier, G., Yokoya, N., Demir, B.: Learning convolutional sparse coding on complex domain for interferometric phase restoration. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 826–840 (2021). https://doi.org/10.1109/TNNLS.2020.2979546
Li, H.C., Hu, W.S., Li, W., Li, J., Du, Q., Plaza, A.: A3 CLNN: spatial, spectral and multiscale attention ConvLSTM neural network for multisource remote sensing data classification. IEEE Trans. Neural Netw. Learn. Syst. 33(2), 747–761 (2022). https://doi.org/10.1109/TNNLS.2020.3028945
Mohla, S., Pande, S., Banerjee, B., Chaudhuri, S.: FusAtNet: dual attention based spectrospatial multimodal fusion network for hyperspectral and lidar classification. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 416–425 (2020). https://doi.org/10.1109/CVPRW50498.2020.00054
Qian, X., et al.: Generating and sifting pseudolabeled samples for improving the performance of remote sensing image scene classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13, 4925–4933 (2020). https://doi.org/10.1109/JSTARS.2020.3019582
Rasti, B., et al.: Feature extraction for hyperspectral imagery: the evolution from shallow to deep: Overview and toolbox. IEEE Geosci. Remote Sens. Mag. 8(4), 60–88 (2020). https://doi.org/10.1109/MGRS.2020.2979764
Turner, W., Spector, S., Gardiner, E., Fladeland, M., Sterling, E., Steininger, M.: Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18, 306–314 (2003). https://doi.org/10.1016/S0169-5347(03)00070-3
Ustin, S.: Manual of Remote Sensing/Remote Sensing for Natural Resource Management and Environmental Monitoring (2004)
Wang, M., Gao, F., Dong, J., Li, H.C., Du, Q.: Nearest neighbor-based contrastive learning for hyperspectral and lidar data classification. IEEE Trans. Geosci. Remote Sens. 61, 1–16 (2023). https://doi.org/10.1109/TGRS.2023.3236154
Wang, W., Tran, D., Feiszli, M.: What makes training multi-modal classification networks hard? In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12692–12702 (2020). https://doi.org/10.1109/CVPR42600.2020.01271
Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. ArXiv abs/1807.06521 (2018). https://api.semanticscholar.org/CorpusID:49867180
Xu, X., Li, W., Ran, Q., Du, Q., Gao, L., Zhang, B.: Multisource remote sensing data classification based on convolutional neural network. IEEE Trans. Geosci. Remote Sens. 56(2), 937–949 (2018). https://doi.org/10.1109/TGRS.2017.2756851
Zhang, B., Li, S., Jia, X., Gao, L., Peng, M.: Adaptive Markov random field approach for classification of hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 8(5), 973–977 (2011). https://doi.org/10.1109/LGRS.2011.2145353
Zhang, C., Yang, Z., He, X., Deng, L.: Multimodal intelligence: representation learning, information fusion, and applications. IEEE J. Sel. Top. Signal Process. 14(3), 478–493 (2020). https://doi.org/10.1109/JSTSP.2020.2987728
Zhang, M., Li, W., Du, Q., Gao, L., Zhang, B.: Feature extraction for classification of hyperspectral and lidar data using patch-to-patch CNN. IEEE Trans. Cybern. 50(1), 100–111 (2020). https://doi.org/10.1109/TCYB.2018.2864670
Zhao, X., Tao, R., Li, W., Philips, W., Liao, W.: Fractional Gabor convolutional network for multisource remote sensing data classification. IEEE Trans. Geosci. Remote Sens. 60, 1–18 (2022). https://doi.org/10.1109/TGRS.2021.3065507
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, Y., Wang, K., Ding, Z. (2024). Convolutional Neural Network Based on Multiple Attention Mechanisms for Hyperspectral and LiDAR Classification. In: Meng, X., Zhang, X., Guo, D., Hu, D., Zheng, B., Zhang, C. (eds) Spatial Data and Intelligence. SpatialDI 2024. Lecture Notes in Computer Science, vol 14619. Springer, Singapore. https://doi.org/10.1007/978-981-97-2966-1_20
Download citation
DOI: https://doi.org/10.1007/978-981-97-2966-1_20
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-2965-4
Online ISBN: 978-981-97-2966-1
eBook Packages: Computer ScienceComputer Science (R0)