Skip to main content

Understanding Spatial Dependency Among Spatial Interactions

  • Conference paper
  • First Online:
Spatial Data and Intelligence (SpatialDI 2024)

Abstract

Spatial dependency exhibits special regularities in spatial interactions. Measuring spatial dependency among spatial interactions can help discover interesting interaction patterns and clusters. Although some metrics have been set up, it is still unclear what potentially affects the presence of spatial dependency among spatial interactions. Thus, we propose an analytical framework to better understand spatial dependency among spatial interactions. First, we define spatial weight matrix for spatial interactions, and then extend Moran’s I and LISA to spatial interactions. Second, we test factors such as first-order spatial autocorrelation and distance decay effect that influence the degree of spatial dependency among spatial interactions. Third, we construct a spatial econometric model for spatial interaction to demonstrate the significance of spatial dependency. The proposed analytical framework is applied in synthetic data and Beijing taxi flows. Results show that the spatial dependency among spatial interactions is positively correlated to the first-order spatial autocorrelation, which is affected by the distance decay effect under a gravity model. Incorporating spatial dependency into a spatial econometric interaction model can also improve its performance.

Supported by the National Natural Science Foundation of China (grant no. 41971331).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anselin, L.: Spatial Econometrics: Methods and Models, vol. 4. Springer, Berlin (1988)

    Book  Google Scholar 

  2. Anselin, L.: What is special about spatial data? alternative perspectives on spatial data analysis. National Center for Geographic Information and Analysis, Technical report, Santa Barbara, CA (1989)

    Google Scholar 

  3. Berglund, S., Karlström, A.: Identifying local spatial association in flow data. J. Geogr. Syst. 1(3), 219–236 (1999). https://doi.org/10.1007/s101090050013

    Article  Google Scholar 

  4. Cai, J., Kwan, M.P.: Detecting spatial flow outliers in the presence of spatial autocorrelation. Comput. Environ. Urban Syst. 96, 101833 (2022). https://doi.org/10.1016/j.compenvurbsys.2022.101833

    Article  Google Scholar 

  5. Chun, Y.: Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J. Geogr. Syst. 10(4), 317–344 (2008). https://doi.org/10.1007/s10109-008-0068-2

    Article  Google Scholar 

  6. Chun, Y., Griffith, D.A.: Modeling network autocorrelation in space-time migration flow data: an eigenvector spatial filtering approach. Ann. Assoc. Am. Geogr. 101(3), 523–536 (2011). https://doi.org/10.1080/00045608.2011.561070

    Article  Google Scholar 

  7. Chun, Y., Kim, H., Kim, C.: Modeling interregional commodity flows with incorporating network autocorrelation in spatial interaction models: an application of the us interstate commodity flows. Comput. Environ. Urban Syst. 36(6), 583–591 (2012). https://doi.org/10.1016/j.compenvurbsys.2012.04.002

    Article  Google Scholar 

  8. Cliff, A., Ord, J.: Spatial Processes: Models & Applications. Pion (1981)

    Google Scholar 

  9. Fang, Z., et al.: Length-squared l-function for identifying clustering pattern of network-constrained flows. Int. J. Digit. Earth 16 (2023). https://doi.org/10.1080/17538947.2023.2265882

  10. Fischer, M.M., Griffith, D.A.: Modeling spatial autocorrelation in spatial interaction data: an application to patent citation data in the European union. J. Reg. Sci. 48(5), 969–989 (2008). https://doi.org/10.1111/j.1467-9787.2008.00572.x

    Article  Google Scholar 

  11. Fotheringham, A.S., O’Kelly, M.E.: Spatial Interaction Models: Formulations and Applications. Kluwer Academic Publishers Dordrecht, Dordrecht (1989)

    Google Scholar 

  12. Gao, S., Wang, Y., Gao, Y., Liu, Y.: Understanding urban traffic-flow characteristics: a rethinking of betweenness centrality. Environ. Plann. B. Plann. Des. 40(1), 135–153 (2013). https://doi.org/10.1068/b38141

    Article  Google Scholar 

  13. Haining, R.P.: Spatial Autocorrelation, pp. 14763–14768. Pergamon, Oxford (2001)

    Google Scholar 

  14. Shu, H., et al.: L-function of geographical flows. Int. J. Geograph. Inf. Sci. 35(4), 689–716 (2021). https://doi.org/10.1080/13658816.2020.1749277

  15. Kan, Z., Kwan, M.P., Tang, L.: Ripley’s k-function for network-constrained flow data. Geogr. Anal. 54(4), 769–788 (2022). https://doi.org/10.1111/gean.12300

    Article  Google Scholar 

  16. Kang, C., Ma, X., Tong, D., Liu, Y.: Intra-urban human mobility patterns: an urban morphology perspective. Phys. A 391(4), 1702–1717 (2012). https://doi.org/10.1016/j.physa.2011.11.005

    Article  Google Scholar 

  17. LeSage, J.P., Pace, R.K.: Spatial econometric modeling of origin-destination flows. J. Reg. Sci. 48(5), 941–967 (2008). https://doi.org/10.1111/j.1467-9787.2008.00573.x

    Article  Google Scholar 

  18. Liu, Y., Gong, L., Tong, Q.: Quantifying the distance effect in spatial interactions. Acta Scientiarum Naturalium Universitatis Pekinensis 50(3), 526–534 (2014)

    Google Scholar 

  19. Liu, Y., Kang, C., Gao, S., Xiao, Y., Tian, Y.: Understanding intra-urban trip patterns from taxi trajectory data. J. Geogr. Syst. 14(4), 1–21 (2012). https://doi.org/10.1007/s10109-012-0166-z

    Article  Google Scholar 

  20. Liu, Y., Tong, D., Liu, X.: Measuring spatial autocorrelation of vectors. Geogr. Anal. 47(3), 300–319 (2015). https://doi.org/10.1111/gean.12069

    Article  Google Scholar 

  21. Liu, Y., et al.: Analytical methods and applications of spatial interactions in the era of big data. Acta Geogr. Sin. 75(7), 1523–1538 (2020)

    Google Scholar 

  22. Lu, Y., Thill, J.C.: Assessing the cluster correspondence between paired point locations. Geogr. Anal. 35(4), 290–309 (2003). https://doi.org/10.1111/j.1538-4632.2003.tb01116.x

    Article  Google Scholar 

  23. Moran, P.A.: Some theorems on time series: Ii the significance of the serial correlation coefficient. Biometrika 35(3/4), 255–260 (1948). https://doi.org/10.2307/2332344

    Article  MathSciNet  Google Scholar 

  24. Ord, J.: Tests of significance using nonnormal data. Geogr. Anal. 12(4), 387–392 (1980). https://doi.org/10.1111/j.1538-4632.1980.tb00044.x

    Article  Google Scholar 

  25. Roy, J.R., Thill, J.C.: Spatial interaction modelling. Pap. Reg. Sci. 83(1), 339–361 (2003). https://doi.org/10.1007/s10110-003-0189-4

    Article  Google Scholar 

  26. Sun, S., Zhang, H.: Flow-data-based global spatial autocorrelation measurements for evaluating spatial interactions. ISPRS Int. J. Geo-Inf. 12(10) (2023). https://doi.org/10.3390/ijgi12100396

  27. Tao, R., Chen, Y., Thill, J.C.: A space-time flow LISA approach for panel flow data. Comput. Environ. Urban Syst. 106, 102042 (2023). https://doi.org/10.1016/j.compenvurbsys.2023.102042

    Article  Google Scholar 

  28. Tao, R., Thill, J.C.: Spatial cluster detection in spatial flow data. Geogr. Anal. 48(4), 355–372 (2016). https://doi.org/10.1111/gean.12100

    Article  Google Scholar 

  29. Tao, R., Thill, J.C.: FlowAMOEBA: identifying regions of anomalous spatial interactions. Geogr. Anal. 51(1), 111–130 (2019). https://doi.org/10.1111/gean.12161

    Article  Google Scholar 

  30. Tao, R., Thill, J.C.: BiFlowLISA: measuring spatial association for bivariate flow data. Comput. Environ. Urban Syst. 83, 101519 (2020). https://doi.org/10.1016/j.compenvurbsys.2020.101519

    Article  Google Scholar 

  31. Thill, J.C.: Choice set formation for destination choice modelling. Prog. Hum. Geogr. 16(3), 361–382 (1992). https://doi.org/10.1177/030913259201600303

    Article  Google Scholar 

  32. Tiefelsdorf, M., Griffith, D.A.: Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environ. Plan. A 39(5), 1193–1221 (2007). https://doi.org/10.1068/a37378

    Article  Google Scholar 

  33. Tobler, W.R.: Spatial interaction patterns. J. Environ. Syst. 6(4), 271–301 (1976). https://doi.org/10.2190/vakc-3grf-3xug-wy4w

    Article  Google Scholar 

  34. Xiao, Y., Wang, F., Liu, Y., Wang, J.: Reconstructing gravitational attractions of major cities in china from air passenger flow data, 2001–2008: a particle swarm optimization approach. Prof. Geogr. 65(2), 265–282 (2013). https://doi.org/10.1080/00330124.2012.679445

    Article  Google Scholar 

  35. Yan, X., et al.: Spatiotemporal flow L-function: a new method for identifying spatiotemporal clusters in geographical flow data. Int. J. Geograph. Inf. Sci. 37(7), 1615–1639 (2023). https://doi.org/10.1080/13658816.2023.2204345

    Article  Google Scholar 

  36. Zhang, L., Cheng, J., Jin, C., Zhou, H.: A multiscale flow-focused geographically weighted regression modelling approach and its application for transport flows on expressways. Appl. Sci. 9(21), 4673 (2019). https://doi.org/10.3390/app9214673

    Article  Google Scholar 

  37. Zhang, W., Zhao, J., Liu, W., Tan, Z., Xing, H.: Geographically weighted flow cross k-function for network-constrained flow data. Appl. Sci. 12(24) (2022). https://doi.org/10.3390/app122412796

  38. Zhu, X., Guo, D.: Mapping large spatial flow data with hierarchical clustering. Trans. GIS 18(3), 421–435 (2014). https://doi.org/10.1111/tgis.12100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, Y., Meng, H., Pei, T., Liu, Y. (2024). Understanding Spatial Dependency Among Spatial Interactions. In: Meng, X., Zhang, X., Guo, D., Hu, D., Zheng, B., Zhang, C. (eds) Spatial Data and Intelligence. SpatialDI 2024. Lecture Notes in Computer Science, vol 14619. Springer, Singapore. https://doi.org/10.1007/978-981-97-2966-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2966-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2965-4

  • Online ISBN: 978-981-97-2966-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics