Skip to main content

Coding Prior-Driven JPEG Image Artifact Removal

  • Conference paper
  • First Online:
Digital Multimedia Communications (IFTC 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2066))

  • 230 Accesses

Abstract

Image priors play an important role in JPEG image artifact removal. However, most existing methods ignore the use of coding priors. This paper proposes a Coding Prior-driven JPEG Image Artifact Removal (dubbed CPIAR) method to improve the performance of JPEG image artifact removal. In the JPEG compression algorithm, because the algorithm divides the image into 8\(\times \)8 blocks and then performs quantization operations, this will cause serious blocking artifacts at the block boundaries. In order to make use of this information, we introduce a mask to represent the boundaries of image blocks. The introduction of this mask makes up for the lack of information about the JPEG compression process in the current deep blind method. We fuse this mask with image features, which can guide the model to focus the boundaries of image blocks, thereby better eliminating the blocking artifacts in JPEG images. In addition, we introduce the Degradation-Aware Dynamic Adjustment Block(DADA Block), which has better nonlinear expression capabilities and can dynamically adjusts the model based on estimated quality factors. Through this improvement we further enhancing its performance in handling JPEG images with varying quality factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)

    Google Scholar 

  2. Amaranageswarao, G., Deivalakshmi, S., Ko, S.B.: Blind compression artifact reduction using dense parallel convolutional neural network. Signal Process. Image Commun. 89, 116009 (2020)

    Article  Google Scholar 

  3. Chen, H., He, X., Qing, L., Xiong, S., Nguyen, T.Q.: DPW-SDNET: dual pixel-wavelet domain deep CNNs for soft decoding of jpeg-compressed images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 711–720 (2018)

    Google Scholar 

  4. Dong, C., Deng, Y., Loy, C.C., Tang, X.: Compression artifacts reduction by a deep convolutional network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 576–584 (2015)

    Google Scholar 

  5. Ehrlich, M., Davis, L., Lim, S.-N., Shrivastava, A.: Quantization guided JPEG artifact correction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 293–309. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_18

    Chapter  Google Scholar 

  6. Fu, D., Shi, Y.Q., Su, W.: A generalized Benford’s law for jpeg coefficients and its applications in image forensics. In: Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505, pp. 574–584. SPIE (2007)

    Google Scholar 

  7. Fu, X., Wang, X., Liu, A., Han, J., Zha, Z.J.: Learning dual priors for JPEG compression artifacts removal. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4086–4095 (2021)

    Google Scholar 

  8. Fu, X., Zha, Z.J., Wu, F., Ding, X., Paisley, J.: JPEG artifacts reduction via deep convolutional sparse coding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2501–2510 (2019)

    Google Scholar 

  9. Galteri, L., Seidenari, L., Bertini, M., Del Bimbo, A.: Deep generative adversarial compression artifact removal. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4826–4835 (2017)

    Google Scholar 

  10. Guo, J., Chao, H.: Building dual-domain representations for compression artifacts reduction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_38

    Chapter  Google Scholar 

  11. Guo, J., Chao, H.: One-to-many network for visually pleasing compression artifacts reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3038–3047 (2017)

    Google Scholar 

  12. He, J., Dong, C., Qiao, Y.: Modulating image restoration with continual levels via adaptive feature modification layers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11056–11064 (2019)

    Google Scholar 

  13. Imambi, S., Prakash, K.B., Kanagachidambaresan, G.: Pytorch. Programming with TensorFlow: solution for edge computing applications, pp. 87–104 (2021)

    Google Scholar 

  14. Jiang, J., Zhang, K., Timofte, R.: Towards flexible blind JPEG artifacts removal. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4997–5006 (2021)

    Google Scholar 

  15. Jin, Z., Iqbal, M.Z., Zou, W., Li, X., Steinbach, E.: Dual-stream multi-path recursive residual network for JPEG image compression artifacts reduction. IEEE Trans. Circuits Syst. Video Technol. 31(2), 467–479 (2020)

    Article  Google Scholar 

  16. Lee, D., Lee, C., Kim, T.: Wide receptive field and channel attention network for jpeg compressed image deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 304–313 (2021)

    Google Scholar 

  17. Li, J., Wang, Y., Xie, H., Ma, K.K.: Learning a single model with a wide range of quality factors for JPEG image artifacts removal. IEEE Trans. Image Process. 29, 8842–8854 (2020)

    Article  Google Scholar 

  18. Pang, B., Nijkamp, E., Wu, Y.N.: Deep learning with tensorflow: a review. J. Educ. Behav. Stat. 45(2), 227–248 (2020)

    Article  Google Scholar 

  19. Qiu, Y., Wang, R., Tao, D., Cheng, J.: Embedded block residual network: a recursive restoration model for single-image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4180–4189 (2019)

    Google Scholar 

  20. Sun, M., He, X., Xiong, S., Ren, C., Li, X.: Reduction of JPEG compression artifacts based on DCT coefficients prediction. Neurocomputing 384, 335–345 (2020)

    Article  Google Scholar 

  21. Tai, Y., Yang, J., Liu, X., Xu, C.: Memnet: a persistent memory network for image restoration. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4539–4547 (2017)

    Google Scholar 

  22. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: Ntire 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 114–125 (2017)

    Google Scholar 

  23. Tutunov, R., Li, M., Cowen-Rivers, A.I., Wang, J., Bou-Ammar, H.: Compositional ADAM: an adaptive compositional solver. arXiv preprint arXiv:2002.03755 (2020)

  24. Wallace, G.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), xviii–xxxiv (1992). https://doi.org/10.1109/30.125072

  25. Wang, L., et al.: Unsupervised degradation representation learning for blind super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10581–10590 (2021)

    Google Scholar 

  26. Xie, B., Zhang, H., Jung, C.: WCDGAN: weakly connected dense generative adversarial network for artifact removal of highly compressed images. IEEE Access 10, 1637–1649 (2021)

    Article  Google Scholar 

  27. Yim, C., Bovik, A.C.: Quality assessment of deblocked images. IEEE Trans. Image Process. 20(1), 88–98 (2010)

    MathSciNet  Google Scholar 

  28. Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3262–3271 (2018)

    Google Scholar 

  29. Zhang, X., Yang, W., Hu, Y., Liu, J.: DMCNN: dual-domain multi-scale convolutional neural network for compression artifacts removal. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 390–394. IEEE (2018)

    Google Scholar 

  30. Zhang, Y., Chandler, D.M., Mou, X.: Multi-domain residual encoder-decoder networks for generalized compression artifact reduction. J. Vis. Commun. Image Represent. 83, 103425 (2022)

    Article  Google Scholar 

  31. Zhang, Y., Li, K., Li, K., Zhong, B., Fu, Y.: Residual non-local attention networks for image restoration. arXiv preprint arXiv:1903.10082 (2019)

  32. Zheng, B., Sun, R., Tian, X., Chen, Y.: S-Net: a scalable convolutional neural network for JPEG compression artifact reduction. J. Electron. Imaging 27(4), 043037–043037 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation of China under Grants 62101346 and 62301330, and in part by the Guangdong Basic and Applied Basic Research Foundation under Grants 2021A1515011702 and 2022A1515110101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuzhen Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, D., Pan, Y., Shi, W., Wen, Y., Liu, Z., Liu, Y. (2024). Coding Prior-Driven JPEG Image Artifact Removal. In: Zhai, G., Zhou, J., Ye, L., Yang, H., An, P., Yang, X. (eds) Digital Multimedia Communications. IFTC 2023. Communications in Computer and Information Science, vol 2066. Springer, Singapore. https://doi.org/10.1007/978-981-97-3623-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-3623-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-3622-5

  • Online ISBN: 978-981-97-3623-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics