Skip to main content

CCDaS: A Benchmark Dataset for Cartoon Character Detection in Application Scenarios

  • Conference paper
  • First Online:
Digital Multimedia Communications (IFTC 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2067))

  • 342 Accesses

Abstract

Deep learning’s achievements in computer vision have poised cartoon character detection (CCD) as a promising tool for intellectual property protection. However, due to the lack of suitable cartoon character datasets, CCD is still a less explored field and there are many issues need to be addressed to meet the demands of practical applications such as merchandise, advertising, and patent examination. In this paper, we introduce CCDaS, a comprehensive benchmark dataset comprising 55,608 images of 524 renowned cartoon characters from 227 works, including cartoons, games, and merchandise. To our knowledge, CCDaS is the most extensive CCD dataset tailored for real-world applications. Alongside, we also provide a CCD algorithm that can achieve accurate detection of animated images in complex practical application scenarios, called multi-path YOLO (MP-YOLO). Experimental results show that our MP-YOLO achieves better detection results on the CCDaS dataset. Comparative and ablation studies further validate the effectiveness of our CCD dataset and algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khan, F.S., Anwer, R.M., Weijer, J.V.D., Bagdanov, A.D., Lopez, A.M.: Color attributes for object detection. In: Proceedings /CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  2. Zhou, Y., Jin, Y., Luo, A., Chan, S., Xiao, X., Yang, X.: Toonnet: a cartoon image dataset and a DNN-based semantic classification system. In: Proceedings of the 16th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, pp. 1–8 (2018)

    Google Scholar 

  3. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimedia Tools Appli. 76(20), 21811–21838 (2017)

    Article  Google Scholar 

  4. Zheng, Y., et al.: Cartoon face recognition: a benchmark dataset. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2264–2272 (2020)

    Google Scholar 

  5. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inform. Process. Syst. 28 (2015)

    Google Scholar 

  6. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  7. Jackson, P.T., Abarghouei, A.A., Bonner, S., Breckon, T.P., Obara, B.: Style augmentation: data augmentation via style randomization. In: CVPR Workshops, vol. 6, pp. 10–11 (2019)

    Google Scholar 

  8. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  9. Li, C., et al.: YOLOv6: a single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976 (2022)

  10. Wang, C.Y., Bochkovskiy, A., Liao, H.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv e-prints (2022)

    Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  12. Cao, J., Cholakkal, H., Anwer, R.M., Khan, F.S., Pang, Y., Shao, L.: D2det: towards high quality object detection and instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11485–11494 (2020)

    Google Scholar 

  13. Sun, P., et al.: Sparse R-CNN: End-to-end object detection with learnable proposals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14454–14463 (2021)

    Google Scholar 

  14. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  15. Xiong, Y., et al.: Mobiledets: searching for object detection architectures for mobile accelerators. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3825–3834 (2021)

    Google Scholar 

  16. Feng, C., Zhong, Y., Gao, Y., Scott, M.R., Huang, W.: Tood: task-aligned one-stage object detection. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3490–3499. IEEE Computer Society (2021)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inform. Process. Syst. 30 (2017)

    Google Scholar 

  18. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  19. Mehta, S., Rastegari, M.: Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer. arXiv preprint arXiv:2110.02178 (2021)

  20. Peng, Z., Huang, W., Gu, S., Xie, L., Wang, Y., Jiao, J., Ye, Q.: Conformer: Local features coupling global representations for visual recognition (2021)

    Google Scholar 

  21. Carion, N., et al.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  22. Li, Y., Wu, C.Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., Feichtenhofer, C.: Improved multiscale vision transformers for classification and detection. arXiv preprint arXiv:2112.01526 (2021)

  23. He, L., Todorovic, S.: DESTR: object detection with split transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9377–9386 (2022)

    Google Scholar 

  24. Bai, Y., Chen, Z., Fu, Z., Peng, L., Liang, P., Cheng, E.: Curveformer: 3d lane detection by curve propagation with curve queries and attention. arXiv preprint arXiv:2209.07989 (2022)

  25. Mishra, A., Rai, S.N., Mishra, A., Jawahar, C.V.: IIIT-CFW: a benchmark database of cartoon faces in the wild. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 35–47. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_3

    Chapter  Google Scholar 

  26. Nguyen, N.V., Rigaud, C., Burie, J.C.: Comic characters detection using deep learning. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 3, pp. 41–46. IEEE (2017)

    Google Scholar 

  27. Chu, W.T., Li, W.W.: Manga facenet: face detection in manga based on deep neural network. In: Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, pp. 412–415 (2017)

    Google Scholar 

  28. Jha, S., Agarwal, N., Agarwal, S.: Bringing cartoons to life: Towards improved cartoon face detection and recognition systems. arXiv preprint arXiv:1804.01753 (2018)

  29. Zhang, B., Li, J., Wang, Y., Cui, Z., Xia, Y., Wang, C., Li, J., Huang, F.: Acfd: asymmetric cartoon face detector. arXiv preprint arXiv:2007.00899 (2020)

  30. Li, Z.: Comparison and analysis of two cartoon face recognition. In: 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), pp. 478–482. IEEE (2021)

    Google Scholar 

  31. Li, Y., Lao, L., Cui, Z., Shan, S., Yang, J.: Graph jigsaw learning for cartoon face recognition. IEEE Trans. Image Process. 31, 3961–3972 (2022)

    Article  PubMed  Google Scholar 

  32. Wang, Y.: Animation character detection algorithm based on clustering and cascaded SSD. Sci. Program. 2022 (2022)

    Google Scholar 

  33. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)

  34. Glenn., J.: YOLOv5 release v6.1. (2022). https://github.com/ultralytics/yolov5/releases/tag/v6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qi, Z., Pan, D., Niu, T., Ying, Z., Shi, P. (2024). CCDaS: A Benchmark Dataset for Cartoon Character Detection in Application Scenarios. In: Zhai, G., Zhou, J., Ye, L., Yang, H., An, P., Yang, X. (eds) Digital Multimedia Communications. IFTC 2023. Communications in Computer and Information Science, vol 2067. Springer, Singapore. https://doi.org/10.1007/978-981-97-3626-3_27

Download citation

Publish with us

Policies and ethics