Skip to main content

A No-Reference Stereoscopic Image Quality Assessment Based on Cartoon Texture Decomposition and Human Visual System

  • Conference paper
  • First Online:
Digital Multimedia Communications (IFTC 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2067))

  • 340 Accesses

Abstract

It has become important to develop an objective stereoscopic image quality assessment (SIQA) method that aligns with human visual system characteristics. To enable an accurate and efficient assessment of stereoscopic image quality, this study introduces a no-reference stereoscopic image quality assessment model, aiming to address the limitations of existing assessment methods. Considering that natural images typically contain information like textures and contours, we decompose stereoscopic views into cartoon and texture images to effectively extract monocular perception features. We also take binocular difference information to explain binocular perception features. Subsequently, a CNN multi-branch architecture is employed to feed images into the network for extracting relevant feature mappings. Finally, all sub-networks are used for quality scoring predictions, resulting in the final perceptual quality score. Experiments conducted on the LIVE dataset have demonstrated the superiority of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rajagopal, H., et al.: A no-reference image quality assessment metric for wood images. J. Rob. Network. Artif. Life 8(2), 127–133 (2021)

    Article  Google Scholar 

  2. Das, T.K.: Anti-forensics of JPEG compression detection schemes using approximation of DCT coefficients. Multimedia Tools Appl. 77(24), 31835–31854 (2018). https://doi.org/10.1007/s11042-018-6170-7

    Article  Google Scholar 

  3. Voo, K.H.B., Bong, D.B.L.: Quality assessment for stereoscopic images with JPEG compression errors. In: IEEE International Conference Consumer Electronics, pp. 220–221 (2015)

    Google Scholar 

  4. Ibrar-ul Haque, M., Qadri, M.T., Siddiqui, N., Altaf, T.: Combined blockiness, blurriness and white noise distortion meter. Wirel. Pers. Commun. 103(3), 1927–1939 (2018)

    Article  Google Scholar 

  5. Ahmed, I.T., Der, C.S., Hammad, B.T.: Impact of contrast-distorted image on curvelet coefficients. In: 2018 1st Annual International Conference on Information and Sciences (AiCIS), Fallujah, Iraq, pp. 28–32 (2018)

    Google Scholar 

  6. Amor, M.B., Kammoun, F., Masmoudi, N.: A quality evaluation model for calculating block and blur effects generated by H.264 and MPEG2 codecs. Comput. Stan. Interfaces 61, 36–44 (2019)

    Article  Google Scholar 

  7. Li, S., Wang, M.: No-reference stereoscopic image quality assessment based on convolutional neural network with a long-term feature fusion. In: 2020 IEEE International Conference on Visual Communication and Image Processing (VCIP), pp. 318–321 (2020)

    Google Scholar 

  8. Keles, O., Yilmaz, M.A., Tekalp, A.M., Korkmaz, C., Dogan, Z.: On the computation of PSNR for a set of images or video. In: Image Coding Workshop 2021 (PCS), pp. 286–290 (2021)

    Google Scholar 

  9. Sasaki, T., Fukushima, N., Maeda, Y., Sugimoto, K., Kamata, S.I.: Constant-time gaussian filtering for acceleration of structure similarity. In: Sudantha, B. (Ed.), 2020 International Conference on Image Processing and Robotics (ICIPROB) (2020)

    Google Scholar 

  10. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)

    Article  PubMed  Google Scholar 

  11. Zhao, J., Mao, X., Chen, L.: Learning deep features to recognise speech emotion using merged deep CNN. IET Signal Proc. 12(6), 713–721 (2018)

    Article  Google Scholar 

  12. Yue, G., et al.: Dual-constraint coarse-to-fine network for camouflaged object detection. IEEE Trans. Circuits Syst. Video Technol. 34, 3286–3298 (2023)

    Article  Google Scholar 

  13. Yue, G., Gao, J., Cong, R., Zhou, T., Li, L., Wang, T.: Deep pyramid network for low-light endoscopic image enhancement. IEEE Trans. Circuits Syst. Video Technol. 34, 3834–3845 (2023)

    Article  Google Scholar 

  14. Yue, G.: Specificity-aware federated learning with dynamic feature fusion network for imbalanced medical image classification. IEEE J. Biomed. Health Inform. 99, 1–11 (2023)

    Article  Google Scholar 

  15. Yin, W., Goldfarb, D., Osher, S.: Image cartoon-texture decomposition and feature selection using the total variation regularized L1 functional. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 73–84. Springer, Heidelberg (2005). https://doi.org/10.1007/11567646_7

    Chapter  Google Scholar 

  16. Ono, S., Miyata, T., Yamada, I.: Cartoon-texture image decomposition using blockwise low-rank texture characterization. IEEE Trans. Image Process. 23(3), 1128–1142 (2014)

    Article  PubMed  Google Scholar 

  17. Yin, W., Goldfarb, D., Osher, S.: Total variation based image cartoon-texture decomposition. Columbia Univ. CORC Rep. TR-2005-01, UCLA CAM Rep. 05–27 (2005)

    Google Scholar 

  18. Shi, B., Zhu, C., Li, L., Huang, H.: Cartoon-texture guided network for low-light image enhancement. Digit. Signal Process. 144, 104271 (2024)

    Article  Google Scholar 

  19. Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.: Texture Fields: learning texture representations in function space. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4531–4540 (2019)

    Google Scholar 

  20. Gu, K., Zhai, G., Lin, W., Liu, M.: The analysis of image contrast: from quality assessment to automatic enhancement. IEEE Trans. Cybern. 46(1), 284–297 (2016). https://doi.org/10.1109/TCYB.2015.2401732

  21. Gu, K., et al.: Saliency-guided quality assessment of screen content images. IEEE Trans. Multimedia 18(6), 1098–1110 (2016)

    Article  Google Scholar 

  22. Cui, Y., Jiang, G., Yu, M., Chen, Y., Ho, Y.S.: Stitched wide field of view light field image quality assessment: benchmark database and objective metric. IEEE Trans. Multimedia (2023)

    Google Scholar 

  23. Tong, F., Meng, M., Blake, R.: Neural bases of binocular rivalry. Trends Cogn. Sci. 10(11), 502–511 (2006)

    Article  PubMed  Google Scholar 

  24. Li, L., Li, Y., Wu, J., Ma, L., Fang, Y.: Quality evaluation for image retargeting with instance semantics. IEEE Trans. Multimedia 23, 2757–2769 (2020)

    Article  Google Scholar 

  25. Ma, L., Wang, X., Liu, Q., Ngan, K.N.: Reorganized DCT-based image representation for reduced reference stereoscopic image quality assessment. Neurocomputing 215, 21–31 (2016)

    Article  Google Scholar 

  26. Chen, Y., Zhu, K., Huanlin, L.: Blind stereo image quality assessment based on binocular visual characteristics and depth perception. IEEE Access 8, 85760–85771 (2020)

    Article  Google Scholar 

  27. Cheng, G., Lai, P., Gao, D., Han, J.: Class attention network for image recognition. Sci. China Inform. Sci. 66(3), 132105 (2023). https://doi.org/10.1007/s11432-021-3493-7

  28. Tang, J., Wang, J., Hu, J.F.: Predicting human poses via recurrent attention network. Vis. Intel. 1(1), 18 (2023). https://doi.org/10.1007/s44267-023-00020-z

  29. Jinhui, F., Li, S., Chang, Y.: No-reference stereoscopic image quality assessment considering binocular disparity and fusion compensation. In: 2021 International Conference on Visual Communications and Image Processing (VCIP), pp. 1–5. IEEE (2021)

    Google Scholar 

  30. Zhang, D.: Onfocus detection: identifying individual-camera eye contact from unconstrained images. Sci. China Inform. Sci. 65(6), 160101 (2022). https://doi.org/10.1007/s11432-020-3181-9

  31. Wu, T., Duan, F., Chang, L., Lu, K.: Human-object interaction detection via interactive visual-semantic graph learning. Sci. China Inform. Sci. 65(6), 160108 (2022). https://doi.org/10.1007/s11432-021-3427-2

  32. Li, S., Han, X., Zubair, M., Ma, S.: Stereo image quality assessment based on sparse binocular fusion convolution neural network. In: IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2019)

    Google Scholar 

  33. Fang, Y., Yan, J., Liu, X., Wang, J.: Stereoscopic image quality assessment by deep convolutional neural network. J. Vis. Commun. Image Represent. 58, 400–406 (2019)

    Article  Google Scholar 

  34. Shi, Y., Guo, W., Niu, Y., Zhan, J.: No-reference stereoscopic image quality assessment using a multi-task CNN and registered distortion representation. Pattern Recogn. 100, 107168 (2020)

    Article  Google Scholar 

  35. Ding, Y., Li, S., Chang, Y.: Stereoscopic image quality assessment weighted guidance by disparity map using convolutional neural network. In: IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2019)

    Google Scholar 

  36. Yan, J., Fang, Y., Huang, L., Min, X., Yao, Y., Zhai, G.: Blind stereoscopic image quality assessment by deep neural network of multi-level feature fusion. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2020)

    Google Scholar 

  37. Si, J., Huang, B., Yang, H., Lin, W., Pan, Z.: A no-reference stereoscopic image quality assessment network based on binocular interaction and fusion mechanisms. IEEE Trans. Image Process. 31, 3066–3080 (2022)

    Article  PubMed  Google Scholar 

  38. Chen, Y., Zhao, Y., Li, S., Zuo, W., Jia, W., Liu, X.: Blind quality assessment for cartoon images. IEEE Trans. Circuits Syst. Video Technol. 30(9), 3282–3288 (2020). https://doi.org/10.1109/TCSVT.2019.2931589

  39. Chen, H., et al.: Perceptual quality assessment of cartoon images. IEEE Trans. Multimedia 25 140–153 (2023). https://doi.org/10.1109/TMM.2021.3121875

  40. Zhang, F., Roysam, B.: Blind quality metric for multidistortion images based on cartoon and texture decomposition. IEEE Signal Process. Lett. 23(9), 1265–1269 (2016)

    Article  Google Scholar 

  41. Servos, P., Goodale, M.A., Jakobson, L.S.: The role of binocular vision in prehension: a kinematic analysis. Vis. Res. 32(8), 1513–1521 (1992)

    Article  PubMed  Google Scholar 

  42. Thorpe, S., Fize, D., Marlot, C.: Speed of processing in the human visual system. Nature 381(6582), 520–522 (1996)

    Google Scholar 

  43. Du, B., Du, C., Yu, L.: MEGF-Net: multi-exposure generation and fusion network for vehicle detection under dim light conditions. Vis. Intel. 1(1), 28 (2023). https://doi.org/10.1007/s44267-023-00030-x

  44. Moorthy, A.K., Su, C.-C., Mittal, A., Bovik, A.C.: Subjective evaluation of stereoscopic image quality. Signal Process. Image Commun. 28(8), 870–883 (2013)

    Article  Google Scholar 

  45. Chen, M.-J., Cormack, L.K., Bovik, A.C.: No-reference quality assessment of natural stereopairs. IEEE Trans. Image Process. 22(9), 3379–3391 (2013)

    Article  PubMed  Google Scholar 

  46. Mei, S., Geng, Y., Hou, J., Du, Q.: Learning hyperspectral images from RGB images via a coarse-to-fine CNN. Sci. China Inform. Sci. 65(5), 1–14 (2021). https://doi.org/10.1007/s11432-020-3102-9

    Article  Google Scholar 

  47. Hu, J., Wang, X., Chai, X., Shao, F., Jiang, Q.: Deep network based stereoscopic image quality assessment via binocular summing and differencing. J. Vis. Commun. Image Representation 82, 103420 (2022). https://doi.org/10.1016/j.jvcir.2021.103420

  48. Messai, O., Chetouani, A., Hachouf, F., Seghir, Z.A.: No-reference stereoscopic image quality predictor using deep features from cyclopean image. Electron. Imaging 33(9), 297-1–297-9 (2021).https://doi.org/10.2352/issn.2470-1173.2021.9.iqsp-297

  49. Si, J., Yang, H., Huang, B., Pan, Z., Su, H.: A full-reference stereoscopic image quality assessment index based on stable aggregation of monocular and binocular visual features. IET Image Process. 15(8), 1629–1643 (2021). https://doi.org/10.1049/ipr2.12132

  50. Messai, O., Hachouf, F., Seghir, Z.A.: Adaboost neural network and cyclopean view for no-reference stereoscopic image quality assessment. Signal Process. Image Commun. 82, 115772 (2020). https://doi.org/10.1016/j.image.2019.115772

  51. Liu, L., Zhang, J., Saad, M.A., Huang, H., Bovik, A.C.: Blind S3D image quality prediction using classical and non-classical receptive field models. Signal Process. Image Commun. 87, 115915 (2020)

    Article  Google Scholar 

  52. Jiang, Q., Zhou, W., Chai, X., Yue, G., Shao, F., Chen, Z.: A full-reference stereoscopic image quality measurement via hierarchical deep feature degradation fusion. IEEE Trans. Instrum. Meas. 69(12), 9784–9796 (2020). https://doi.org/10.1109/TIM.2020.3005111

Download references

Acknowledgments

This work is supported by Shenyang science and technology plan project under Grant 23–407-3–32, Liaoning Province Natural Science Foundation under Grant 2023-MS-139 and National Natural Science Foundation of China under Grant 61901205.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaohui Wang , Minzhu Jin or Bo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Bai, Y., Wang, Y., Jin, M., Liu, B. (2024). A No-Reference Stereoscopic Image Quality Assessment Based on Cartoon Texture Decomposition and Human Visual System. In: Zhai, G., Zhou, J., Ye, L., Yang, H., An, P., Yang, X. (eds) Digital Multimedia Communications. IFTC 2023. Communications in Computer and Information Science, vol 2067. Springer, Singapore. https://doi.org/10.1007/978-981-97-3626-3_6

Download citation

Publish with us

Policies and ethics