Skip to main content

Efficient Detection Model Using Feature Maximizer Convolution for Edge Computing

  • Conference paper
  • First Online:
Frontiers of Computer Vision (IW-FCV 2024)

Abstract

Deep learning is heavily influenced by the quantity and quality of data. Moreover, most deep learning models are developed and tested on servers equipped with high-performance GPUs and large memory capacities. However, for practical application in industrial fields or real-world scenarios, optimal performance must be achieved using limited resources and equipment. Therefore, this paper proposes the FMC (Feature Maximizer Convolution). This method aims to enhance performance with limited data by extracting as diverse features as possible and assigning more weight to crucial feature maps, which are then passed on to the next layer. Additionally, to ensure real-time performance on limited hardware, DSC (Depthwise Separable Convolution) is employed instead of standard convolution to reduce computational load. The approach is applied to deep learning models on datasets such as COCO, VisDrone, VOC, and xView, and its performance is compared with existing networks. Inference experiments are also conducted on the edge device Odroid H3+. The proposed network shows a 30% average reduction in the number of parameters compared to existing networks and a 5% increase in inference speed. On the Odroid H3+, the inference speed improved by an average of 2.5 ms, resulting in an increase from 19 FPS to 20 FPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. CoRR arxiv:1712.04621 (2017)

  2. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019). https://doi.org/10.1186/s40537-019-0197-0citeas

    Article  Google Scholar 

  3. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685 (2020)

  4. Sun, Q., Liu, Y., Chua, T., Schiele, B.: Meta-transfer learning for few-shot learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 403–412. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  5. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  6. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88, 303–308 (2009). https://www.microsoft.com/en-us/research/publication/the-pascal-visual-object-classes-voc-challenge/

  7. Lam, D., et al.: xview: objects in context in overhead imagery (2018)

    Google Scholar 

  8. Zhu, P., et al.: Detection and tracking meet drones challenge. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 7380–7399 (2021)

    Article  Google Scholar 

  9. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks (2016)

    Google Scholar 

  10. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  11. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection (2015). https://arxiv.org/abs/1506.02640

  12. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement (2018). https://arxiv.org/abs/1804.02767

  13. Jocher, G., et al.: ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation (2022). https://doi.org/10.5281/zenodo.7347926

  14. Lian, Z., Tian, F.: Deepsi: a sensitive-driven testing samples generation method of whitebox cnn model for edge computing. Tsinghua Sci. Technol. 29(3), 784–794 (2024)

    Article  Google Scholar 

  15. Zeng, L., Liu, Q., Shen, S., Liu, X.: Improved double deep q network-based task scheduling algorithm in edge computing for makespan optimization. Tsinghua Sci. Technol. 29(3), 806–817 (2024)

    Article  Google Scholar 

  16. Wang, G., et al.: Bed: a real-time object detection system for edge devices ( 2022)

    Google Scholar 

  17. Liu, S., Zha, J., Sun, J., Li, Z., Wang, G.: Edgeyolo: an edge-real-time object detector (2023)

    Google Scholar 

  18. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  19. Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection (2017)

    Google Scholar 

Download references

Acknowledgements

This result was supported by “Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE)(2021RIS-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanghyun Jo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choi, J., Lee, Y., Jo, K. (2024). Efficient Detection Model Using Feature Maximizer Convolution for Edge Computing. In: Irie, G., Shin, C., Shibata, T., Nakamura, K. (eds) Frontiers of Computer Vision. IW-FCV 2024. Communications in Computer and Information Science, vol 2143. Springer, Singapore. https://doi.org/10.1007/978-981-97-4249-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-4249-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-4248-6

  • Online ISBN: 978-981-97-4249-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics