Skip to main content

Deep Residual Networks for Pigmented Skin Lesions Diagnosis

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Theory and Applications (IEA/AIE 2024)

Abstract

The skin is a barrier, protecting the body from external factors such as bacteria, viruses, and harmful environmental agents. Healthy skin is a crucial factor in creating an attractive appearance and a source of motivation for personal confidence. Skin conditions can also affect our emotions and mental well-being, with skin problems that can cause stress and self-consciousness. Maintaining skin health helps maintain an appealing outward appearance and plays a vital role in the early detection of health issues such as skin cancer and other dermatological conditions. Using advancements in deep learning has facilitated the diagnosis of various pigmented skin lesions, including actinic keratosis, basal cell carcinoma, seborrheic keratosis, dermatofibroma, malignant melanoma, nevus, and vascular lesions with Deep Residual Networks on images of various sizes. However, traditional methods have limitations in handling large image areas, especially in the presence of noise or complex lesion regions. In this study, we employed ResNet50, VGG16, and InceptionV3 for skin disease diagnosis, showing promising results compared to previous studies. The experimental results demonstrate high performance across accuracy, Area Under the curve, Precision, Recall, and F1-score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv)-radiation-and-skin-cancer.

  2. 2.

    https://www.wcrf-uk.org/cancer-types/skin-cancer/.

  3. 3.

    https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/.

References

  1. Mruthyunjayappa, S., Mahantappa, H., Gopal, M., Venugopal, S.B.: A study of spectrum of histopathological features in patients presenting with hyperpigmented skin lesions. Arch. Med. Health Sci. 4(2), 189–195 (2016)

    Article  Google Scholar 

  2. Thawabteh, A.M., Jibreen, A., Karaman, D., Thawabteh, A., Karaman, R.: A comprehensive review on skin pigmentation-types, causes, and treatment (2023). https://doi.org/10.20944/preprints202305.0751.v1

  3. Kassem, M.A., Hosny, K.M., Damaševičius, R., Eltoukhy, M.M.: Machine learning and deep learning methods for skin lesion classification and diagnosis: a systematic review. Diagnostics 11(8), 1390 (2021). https://doi.org/10.3390/diagnostics11081390

    Article  Google Scholar 

  4. Abunadi, I., Senan, E.M.: Deep learning and machine learning techniques of diagnosis dermoscopy images for early detection of skin diseases. Electronics 10(24), 3158 (2021). https://doi.org/10.3390/electronics10243158

    Article  Google Scholar 

  5. Yilmaz, E., Trocan, M.: Benign and malignant skin lesion classification comparison for three deep-learning architectures. In: Nguyen, N.T., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds.) ACIIDS 2020. LNCS (LNAI), vol. 12033, pp. 514–524. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41964-6_44

    Chapter  Google Scholar 

  6. Belaid, O.N., Loudini, M.: Classification of brain tumor by combination of pre-trained VGG16 CNN. J. Inf. Technol. Manag. 12(2), 13–25 (2020). https://doi.org/10.22059/jitm.2020.75788

    Article  Google Scholar 

  7. Jinnai, S., Yamazaki, N., Hirano, Y., Sugawara, Y., Ohe, Y., Hamamoto, R.: The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10(8), 1123 (2020). https://doi.org/10.3390/biom10081123

    Article  Google Scholar 

  8. Wei, Z., Song, H., Chen, L., Li, Q., Han, G.: Attention-based denseunet network with adversarial training for skin lesion segmentation. IEEE Access 7, 136616–136629 (2019)

    Article  Google Scholar 

  9. Ali, R., Hardie, R.C., Narayanan Narayanan, B., De Silva, S.: Deep learning ensemble methods for skin lesion analysis towards melanoma detection. In: 2019 IEEE National Aerospace and Electronics Conference (NAECON). IEEE (2019). https://doi.org/10.1109/NAECON46414.2019.9058245

  10. Yang, Y., et al.: Development and validation of two artificial intelligence models for diagnosing benign, pigmented facial skin lesions. Skin Res. Technol. 27(1), 74–79 (2020). https://doi.org/10.1111/srt.12911

    Article  Google Scholar 

  11. Pham, N.H., Nguyen, H.T., Phan, T.T.: Shallow convolutional neural network configurations for skin disease diagnosis. In: Dao, N.N., Thinh, T.N., Nguyen, N.T. (eds.) ICIT 2023. LNDECT, vol. 187, pp. 370–381. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-46573-4_34

    Chapter  Google Scholar 

  12. Tschandl, P.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions (2018). https://doi.org/10.7910/DVN/DBW86T

  13. Ibrahim, A.M., Elbasheir, M., Badawi, S., Mohammed, A., Alalmin, A.F.M.: Skin cancer classification using transfer learning by VGG16 architecture (case study on Kaggle dataset). J. Intell. Learn. Syst. Appl. 15(03), 67–75 (2023). https://doi.org/10.4236/jilsa.2023.153005

    Article  Google Scholar 

  14. Nahata, H., Singh, S.P.: Deep learning solutions for skin cancer detection and diagnosis. In: Jain, V., Chatterjee, J.M. (eds.) Machine Learning with Health Care Perspective. LAIS, vol. 13, pp. 159–182. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40850-3_8

    Chapter  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). https://arxiv.org/abs/1512.03385

  16. Calderón, C., Sanchez, K., Castillo, S., Arguello, H.: BILSK: a bilinear convolutional neural network approach for skin lesion classification. Comput. Methods Programs Biomed. Update 1, 100036 (2021)

    Article  Google Scholar 

  17. Nugroho, A.A., Slamet, I., Sugiyanto, S.: Skins cancer identification system of HAML0000 skin cancer dataset using convolutional neural network. In: AIP Conference Proceedings. AIP Publishing (2019). https://doi.org/10.1063/1.5141652

  18. Ali, K., Shaikh, Z.A., Khan, A.A., Laghari, A.A.: Multiclass skin cancer classification using EfficientNets - a first step towards preventing skin cancer. Neurosci. Inform. 2(4), 100034 (2022). https://doi.org/10.1016/j.neuri.2021.100034

    Article  Google Scholar 

  19. Alam, T.M., et al.: An efficient deep learning-based skin cancer classifier for an imbalanced dataset. Diagnostics 12(9), 2115 (2022). https://doi.org/10.3390/diagnostics12092115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linh Thuy Thi Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, H.T., Ha, C.N., Thi Pham, L.T., Thi-Ngoc-Diem, P., Thanh-Dien, T. (2024). Deep Residual Networks for Pigmented Skin Lesions Diagnosis. In: Fujita, H., Cimler, R., Hernandez-Matamoros, A., Ali, M. (eds) Advances and Trends in Artificial Intelligence. Theory and Applications. IEA/AIE 2024. Lecture Notes in Computer Science(), vol 14748. Springer, Singapore. https://doi.org/10.1007/978-981-97-4677-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-4677-4_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-4676-7

  • Online ISBN: 978-981-97-4677-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics