Skip to main content

Identification of Users in a Gambling Problem with the Use of Machine Learning

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2024)

Abstract

In this article, we address the pressing issue of problem gambling and the initiatives undertaken by bookmaking companies to foster responsible gambling. The primary objective of this research is to identify users at risk of developing gambling addiction. To achieve this, we employ machine learning techniques and preprocessing tools to acquire and anonymize user data. A comprehensive dataset is utilized to pinpoint individuals who are at a heightened risk.

The study specifically focuses on devising an automated method to detect early indicators of irresponsible gambling behaviours. By applying advanced machine learning algorithms to a tailored set of features, we aim to identify the initial signs of potential gambling issues. The methodology does not rely on a singular algorithm, ensuring a broad and effective approach to problem identification.

The efficacy of this approach is validated through computational experiments, which are conducted on real data and subsequently verified by specialists in the field of gambling addiction. The results demonstrate a significant capability in successfully identifying users who exhibit early signs of potential gambling problems. This research contributes to the academic understanding of problem gambling and offers practical solutions for responsible gambling initiatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhter, S., et al.: Using machine learning to predict potential online gambling addicts (2018)

    Google Scholar 

  2. Allami, Y., Hodgins, D.C., Young, M., Brunelle, N., Currie, S., Dufour, M., Flores-Pajot, M.C., Nadeau, L.: A meta-analysis of problem gambling risk factors in the general adult population. Addiction 116(11), 2968–2977 (2021)

    Article  Google Scholar 

  3. Auer, M., Griffiths, M.D.: Voluntary limit setting and player choice in most intense online gamblers: An empirical study of gambling behaviour. J. Gambl. Stud. 29(4), 647–660 (2013)

    Article  Google Scholar 

  4. Auer, M., Griffiths, M.D.: Cognitive dissonance, personalized feedback, and online gambling behavior: an exploratory study using objective tracking data and subjective self-report. Int. J. Ment. Heal. Addict. 16(3), 631–641 (2018)

    Article  Google Scholar 

  5. Auer, M., Griffiths, M.D.: The use of personalized messages on wagering behavior of swedish online gamblers: An empirical study. Comput. Hum. Behav. 110, 106402 (2020)

    Article  Google Scholar 

  6. Auer, M., Griffiths, M.D.: Reasons for gambling and problem gambling among norwegian horse bettors: a real-world study utilizing combining survey data and behavioral player data. Int. J. Mental Health Addiction, 1–16 (2021)

    Google Scholar 

  7. Auer, M., Griffiths, M.D.: The effect of a mandatory play break on subsequent gambling behavior among British online casino players: a large-scale real-world study. J. Gambling Stud., 1–17 (2022)

    Google Scholar 

  8. Auer, M., Griffiths, M.D.: Gambling before and during the covid-19 pandemic among online casino gamblers: An empirical study using behavioral tracking data. Int. J. Ment. Heal. Addict. 20(3), 1722–1732 (2022)

    Article  Google Scholar 

  9. Auer, M., Hopfgartner, N., Griffiths, M.D.: The effect of loss-limit reminders on gambling behavior: a real-world study of Norwegian gamblers. J. Behav. Addict. 7(4), 1056–1067 (2018)

    Article  Google Scholar 

  10. Blaszczynski, A., Nower, L.: A pathways model of problem and pathological gambling. Addiction 97(5), 487–499 (2002)

    Article  Google Scholar 

  11. Braverman, J., LaPlante, D.A., Nelson, S.E., Shaffer, H.J.: Using cross-game behavioral markers for early identification of high-risk internet gamblers. Psychol. Addict. Behav. 27(3), 868 (2013)

    Article  Google Scholar 

  12. Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine learning. J. Artif. Intell. Res. 70, 245–317 (2021)

    Article  MathSciNet  Google Scholar 

  13. Calado, F., Griffiths, M.D.: Problem gambling worldwide: an update and systematic review of empirical research (2000–2015). J. Behav. Addict. 5(4), 592–613 (2016)

    Article  Google Scholar 

  14. Cerasa, A., et al.: Personality biomarkers of pathological gambling: a machine learning study. J. Neurosci. Methods 294, 7–14 (2018)

    Article  Google Scholar 

  15. Constantinou, A.C., Fenton, N.E., Neil, M.: Profiting from an inefficient association football gambling market: Prediction, risk and uncertainty using bayesian networks. Knowl.-Based Syst. 50, 60–86 (2013)

    Article  Google Scholar 

  16. Deng, X., Lesch, T., Clark, L.: Applying data science to behavioral analysis of online gambling. Curr. Addict. Rep. 6(3), 159–164 (2019)

    Article  Google Scholar 

  17. Finkenwirth, S., MacDonald, K., Deng, X., Lesch, T., Clark, L.: Using machine learning to predict self-exclusion status in online gamblers on the playnow. com platform in British Columbia. Int. Gambling Stud. 21(2), 220–237 (2021)

    Google Scholar 

  18. Fryer, D., Strümke, I., Nguyen, H.: Shapley values for feature selection: the good, the bad, and the axioms. IEEE Access 9, 144352–144360 (2021)

    Article  Google Scholar 

  19. Geraldes, S.A.A.: Descriptive analysis of online blackjack gamblers: an unsupervised data mining approach (2021)

    Google Scholar 

  20. Ghorbani, A., Zou, J.: Data shapley: Equitable valuation of data for machine learning, pp. 2242–2251 (2019)

    Google Scholar 

  21. Gray, H.M., LaPlante, D.A., Shaffer, H.J.: Behavioral characteristics of internet gamblers who trigger corporate responsible gambling interventions. Psychol. Addict. Behav. 26(3), 527 (2012)

    Article  Google Scholar 

  22. Han, H., Wang, W.Y., Mao, B.H.: Borderline-smote: a new over-sampling method in imbalanced data sets learning, pp. 878–887 (2005)

    Google Scholar 

  23. Hancock, J., Khoshgoftaar, T.M.: Performance of catboost and xgboost in medicare fraud detection, pp. 572–579 (2020)

    Google Scholar 

  24. Harris, A., Griffiths, M.D.: A critical review of the harm-minimisation tools available for electronic gambling. J. Gambl. Stud. 33(1), 187–221 (2017)

    Article  Google Scholar 

  25. Hassanniakalager, A., Newall, P.W.: A machine learning perspective on responsible gambling. Behav. Public Policy 6(2), 237–260 (2022)

    Article  Google Scholar 

  26. Hopfgartner, N., Auer, M., Santos, T., Helic, D., Griffiths, M.D.: The effect of mandatory play breaks on subsequent gambling behavior among norwegian online sports betting, slots and bingo players: a large-scale real world study. J. Gambling Stud., 1–16 (2021)

    Google Scholar 

  27. Ivanova, E., Rafi, J., Lindner, P., Carlbring, P.: Experiences of responsible gambling tools among non-problem gamblers: a survey of active customers of an online gambling platform. Addictive Behav. Rep. 9, 100161 (2019)

    Article  Google Scholar 

  28. Li, H., Mao, L.L., Zhang, J.J., Xu, J.: Classifying and profiling sports lottery gamblers: a cluster analysis approach. Soc. Behav. Personal. Int. J. 43(8), 1299–1317 (2015)

    Article  Google Scholar 

  29. MacKay, T.L., Hodgins, D.C.: Cognitive distortions as a problem gambling risk factor in internet gambling. Int. Gambl. Stud. 12(2), 163–175 (2012)

    Article  Google Scholar 

  30. Mak, K.K., Lee, K., Park, C.: Applications of machine learning in addiction studies: a systematic review. Psychiatry Res. 275, 53–60 (2019)

    Article  Google Scholar 

  31. Matej, U., Gustav, Š, Ondřej, H., Filip, Ž: Optimal sports betting strategies in practice: an experimental review. IMA J. Manag. Math. 32(4), 465–489 (2021)

    MathSciNet  Google Scholar 

  32. Maupomé, D., Armstrong, M.D., Rancourt, F., Soulas, T., Meurs, M.J.: Early detection of signs of pathological gambling, self-harm and depression through topic extraction and neural networks, pp. 1031–1045 (2021)

    Google Scholar 

  33. Percy, C., d’Avila Garcez, A.S., Dragičević, S., França, M.V., Slabaugh, G., Weyde, T.: The need for knowledge extraction: Understanding harmful gambling behavior with neural networks, pp. 974–981 (2016)

    Google Scholar 

  34. Percy, C., França, M., Dragičević, S., d’Avila Garcez, A.: Predicting online gambling self-exclusion: an analysis of the performance of supervised machine learning models. Int. Gambl. Stud. 16(2), 193–210 (2016)

    Article  Google Scholar 

  35. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: Catboost: unbiased boosting with categorical features. Advances in neural information processing systems 31 (2018)

    Google Scholar 

  36. Redish, A.D., Jensen, S., Johnson, A., Kurth-Nelson, Z.: Reconciling reinforcement learning models with behavioral extinction and renewal: implications for addiction, relapse, and problem gambling. Psychol. Rev. 114(3), 784 (2007)

    Article  Google Scholar 

  37. Sarkar, S., Weyde, T., Garcez, A., Slabaugh, G.G., Dragicevic, S., Percy, C.: Accuracy and interpretability trade-offs in machine learning applied to safer gambling 1773 (2016)

    Google Scholar 

  38. Sikiric, K.: Gambling safety net: Predicting the risk of problem gambling using bayesian networks (2020)

    Google Scholar 

  39. Silpa-Anan, C., Hartley, R.: Optimised kd-trees for fast image descriptor matching, pp. 1–8 (2008)

    Google Scholar 

  40. Yau, M.Y.H., Potenza, M.N.: Gambling disorder and other behavioral addictions: recognition and treatment. Harv. Rev. Psychiatry 23(2), 134 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Jach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jach, T. et al. (2024). Identification of Users in a Gambling Problem with the Use of Machine Learning. In: Nguyen, N.T., et al. Intelligent Information and Database Systems. ACIIDS 2024. Lecture Notes in Computer Science(), vol 14796. Springer, Singapore. https://doi.org/10.1007/978-981-97-4985-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-4985-0_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-4984-3

  • Online ISBN: 978-981-97-4985-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics