Abstract
This paper achieves fast polynomial inverse operations specifically tailored for the NTRU Prime KEM on ARMv8 NEON instruction set benchmarking on four processor architectures: Cortex-A53, Cortex-A72, Cortex-A76 and Apple M1. We utilize the jumping divison steps of the constant-time GCD algorithm from Bernstein and Yang (TCHES’19) and optimize underlying polynomial multiplication of various lengths to improve the efficiency for computing polynomial inverse operations in NTRU Prime.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alkim, E., Cheng, D.Y.L., Chung, C.M.M., Evkan, H., Huang, L.W.L., Hwang, V., Li, C.L.T., Niederhagen, R., Shih, C.J., Wälde, J., Yang, B.Y.: Polynomial multiplication in NTRU prime: Comparison of optimization strategies on cortex-M4. Cryptology ePrint Archive, Report 2020/1216 (2020)
ARM: Arm architecture reference manual armv8, for a-profile architecture (2021)
Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO’86. Lecture Notes in Computer Science, vol. 263, pp. 311–323. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug (1987)
Becker, H., Hwang, V., Kannwischer, M.J., Yang, B.Y., Yang, S.Y.: Neon NTT: Faster dilithium, kyber, and saber on cortex-A72 and apple M1. IACR Transactions on Cryptographic Hardware and Embedded Systems 2022(1), 221–244 (2022)
Bernstein, D.J., Brumley, B.B., Chen, M.S., Chuengsatiansup, C., Lange, T., Marotzke, A., Peng, B.Y., Tuveri, N., van Vredendaal, C., Yang, B.Y.: NTRU Prime. Tech. rep., National Institute of Standards and Technology (2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
Bernstein, D.J., Brumley, B.B., Chen, M., Tuveri, N.: Opensslntru: Faster post-quantum TLS key exchange. In: Butler, K.R.B., Thomas, K. (eds.) 31st USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022. pp. 845–862. USENIX Association (2022)
Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU Prime. Tech. rep., National Institute of Standards and Technology (2019), available at https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
Bernstein, D.J., Lange, T.: ebacs: Ecrypt benchmarking of cryptographic systems. https://bench.cr.yp.to, accessed 19 february 2024
Bernstein, D.J., Yang, B.Y.: Fast constant-time gcd computation and modular inversion. IACR Transactions on Cryptographic Hardware and Embedded Systems 2019(3), 340–398 (2019). https://doi.org/10.13154/tches.v2019.i3.340-398
Bruun, G.: z-transform dft filters and fft’s. IEEE Trans. Acoust. Speech Signal Process. 26(1), 56–63 (1978)
Cao, Z., Wei, R., Lin, X.: A fast modular reduction method. Cryptology ePrint Archive, Report 2014/040 (2014), https://eprint.iacr.org/2014/040
Chen, C., Danba, O., Hoffstein, J., Hulsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P., Whyte, W., Zhang, Z., Saito, T., Yamakawa, T., Xagawa, K.: NTRU. Tech. rep., National Institute of Standards and Technology (2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
Cook, S.A., Aanderaa, S.O.: On the minimum computation time of functions. Trans. Am. Math. Soc. 142, 291–314 (1969)
Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Math. Comput. 19, 297–301 (1965)
Deshpande, S., del Pozo, S.M., Mateu, V., Manzano, M., Aaraj, N., Szefer, J.: Modular Inverse for Integers using Fast Constant Time GCD Algorithm and its Applications. International Conference on Field-Programmable Logic and Applications (FPL) (2021)
Gentleman, W.M., Sande, G.: Fast fourier transforms: for fun and profit. In: Proceedings of the November 7-10, 1966, Fall Joint Computer Conference. p. 563-578. AFIPS ’66 (Fall), Association for Computing Machinery, New York, NY, USA (1966). https://doi.org/10.1145/1464291.1464352
Good, I.J.: Random motion on a finite abelian group. Math. Proc. Cambridge Philos. Soc. 47, 756–762 (1951)
Huang, J., Zhang, J., Zhao, H., Liu, Z., Cheung, R.C.C., Koç, Ç.K., Chen, D.: Improved plantard arithmetic for lattice-based cryptography. IACR Transactions on Cryptographic Hardware and Embedded Systems 2022(4), 614–636 (2022)
Hwang, V.: Pushing the limit of vectorized polynomial multiplication for ntru prime. Cryptology ePrint Archive, Paper 2023/604 (2023)
Hwang, V., Liu, C.T., Yang, B.Y.: Algorithmic views of vectorized polynomial multipliers - ntru prime. Cryptology ePrint Archive, Paper 2023/1580 (2023)
Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata. Soviet Physics Doklady 7, 595 (12 1962)
Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44(170), 519–521 (1985)
Nussbaumer, H.: Fast polynomial transform algorithms for digital convolution. IEEE Trans. Acoust. Speech Signal Process. 28(2), 205–215 (1980)
OpenSSH: Openssh 9.0 release notes (2022)
Paksoy, I.K., Cenk, M.: Faster NTRU on ARM cortex-M4 with TMVP-based multiplication. Cryptology ePrint Archive, Report 2022/300 (2022)
Rader, C.: Discrete fourier transforms when the number of data samples is prime. Proc. IEEE 56(6), 1107–1108 (1968)
Richter-Brockmann, J., Chen, M.S., Ghosh, S., Güneysu, T.: Racing BIKE: Improved polynomial multiplication and inversion in hardware. IACR Transactions on Cryptographic Hardware and Embedded Systems 2022(1), 557–588 (2022)
Schönhage, A., Strassen, V.: Schnelle multiplikation großer zahlen. Computing 7, 281–292 (1971), https://api.semanticscholar.org/CorpusID:9738629
Yeniaras, E., Cenk, M.: Faster characteristic three polynomial multiplication and its application to NTRU prime decapsulation. Cryptology ePrint Archive, Report 2020/1336 (2020), https://eprint.iacr.org/2020/1336
Yeniaras, E., Cenk, M.: Faster characteristic three polynomial multiplication and its application to NTRU Prime decapsulation. J. Cryptogr. Eng. 12(3), 329–348 (2022). https://doi.org/10.1007/s13389-021-00282-7
Acknowledgement
We thank Jin-Han Liu and Vincent Hwang for valuable suggestions and discussions. This project was supported by TACC project NSTC-112-2634-F-001-001-MBK and the Academia Sinica Investigator Award AS-IA-109-M01.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Jian, LJ., Wang, TY., Yang, BY., Chen, MS. (2024). Jumping for Bernstein-Yang Inversion. In: Zhu, T., Li, Y. (eds) Information Security and Privacy. ACISP 2024. Lecture Notes in Computer Science, vol 14896. Springer, Singapore. https://doi.org/10.1007/978-981-97-5028-3_6
Download citation
DOI: https://doi.org/10.1007/978-981-97-5028-3_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-5027-6
Online ISBN: 978-981-97-5028-3
eBook Packages: Computer ScienceComputer Science (R0)