Skip to main content

DualRing-PRF: Post-quantum (Linkable) Ring Signatures from Legendre and Power Residue PRFs

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14896))

Included in the following conference series:

  • 229 Accesses

Abstract

Ring signatures allow a signer to anonymously sign a message on behalf of a spontaneously formed group. It not only ensures the authenticity of the message but also conceals the true signer within the group. An important extension of ring signatures is linkable ring signatures, which prevent a signer from signing twice without being detected (under some constraints). Linkable ring signatures offer advantages in applications where full anonymity might jeopardize the intended purpose, such as privacy-oriented cryptocurrencies like Monero.

In this work, we introduce post-quantum ring signature (DualRing-PRF) and linkable ring signature (\(DualRing_{L}\)-PRF) schemes whose security solely rely on symmetric-key primitives (namely, Legendre PRF and power residue PRF). Our construction of the ring signature departs from previous approaches with similar security assumptions, offering the most competitive signature sizes for small and medium-sized rings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Efficiency of ring signatures for small and medium-sized rings is crucial in real-world applications due to their inherent linear signing and verification. These limitations restrict the size of the ring, making it challenging to scale. For instance, after the release of Monero version 0.13, the smallest ring size was fixed at 16 to ensure transaction anonymity. Therefore, as stated in [27], one could argue that the most relevant ring size in practice falls between 10 and 2000.

  2. 2.

    The verification time is not shown since it is approximately equal to the signing time.

References

  1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: ASIACRYPT. pp. 415–432. Springer (2002)

    Google Scholar 

  2. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures: logarithmic-size, no setup-from standard assumptions. In: EUROCRYPT. pp. 281–311. Springer (2019)

    Google Scholar 

  3. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles. In: TCC. pp. 60–79. Springer (2006)

    Google Scholar 

  4. Beullens, W., Katsumata, S., Pintore, F.: Calamari and falafl: logarithmic (linkable) ring signatures from isogenies and lattices. In: ASIACRYPT. pp. 464–492. Springer (2020)

    Google Scholar 

  5. Beullens, W., Delpech de Saint Guilhem, C.: Legroast: Efficient post-quantum signatures from the legendre prf. In: PQCrypto. pp. 130–150. Springer (2020)

    Google Scholar 

  6. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range proofs. In: ASIACRYPT. pp. 234–252. Springer (2008)

    Google Scholar 

  7. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Online/offline or composition of sigma protocols. In: EUROCRYPT. pp. 63–92. Springer (2016)

    Google Scholar 

  8. Damgård, I.B.: On the randomness of legendre and jacobi sequences. In: ASIACRYPT. pp. 163–172. Springer (1988)

    Google Scholar 

  9. Derler, D., Ramacher, S., Slamanig, D.: Post-quantum zero-knowledge proofs for accumulators with applications to ring signatures from symmetric-key primitives. In: PQCrypto. pp. 419–440. Springer (2018)

    Google Scholar 

  10. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: EUROCRYPT. pp. 609–626. Springer (2004)

    Google Scholar 

  11. Esgin, M.F., Steinfeld, R., Zhao, R.K.: Matrict+: More efficient post-quantum private blockchain payments. In: IEEE S &P. pp. 1281–1298. IEEE (2022)

    Google Scholar 

  12. Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Efficient set membership proofs using mpc-in-the-head. Cryptology ePrint Archive (2021)

    Google Scholar 

  13. Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Stacking sigmas: A framework to compose-protocols for disjunctions. In: EUROCRYPT. pp. 458–487. Springer (2022)

    Google Scholar 

  14. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and spend a coin. In: EUROCRYPT. pp. 253–280. Springer (2015)

    Google Scholar 

  15. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from secure multiparty computation. SIAM JoC 39(3), 1121–1152 (2009)

    MathSciNet  Google Scholar 

  16. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: ACM CCS. pp. 525–537 (2018)

    Google Scholar 

  17. Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Linkable ring signature with unconditional anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157–165 (2013)

    Article  Google Scholar 

  18. Liu, J.K., Wong, D.S.: Linkable ring signatures: Security models and new schemes. In: ICCSA. pp. 614–623. Springer (2005)

    Google Scholar 

  19. Lyubashevsky, V., Nguyen, N.K.: Bloom: Bimodal lattice one-out-of-many proofs and applications. In: ASIACRYPT. pp. 95–125. Springer (2022)

    Google Scholar 

  20. Naor, M.: Bit commitment using pseudo-randomness. In: ASIACRYPT. pp. 128–136. Springer (1989)

    Google Scholar 

  21. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1, 1–18 (2016)

    Google Scholar 

  22. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: ASIACRYPT. pp. 552–565. Springer (2001)

    Google Scholar 

  23. Scafuro, A., Zhang, B.: One-time traceable ring signatures. In: ESORICS. pp. 481–500. Springer (2021)

    Google Scholar 

  24. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In: PKC. pp. 166–180. Springer (2007)

    Google Scholar 

  25. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations of computer science. pp. 124–134. Ieee (1994)

    Google Scholar 

  26. Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and attestation. In: ISPEC. pp. 48–60. Springer (2005)

    Google Scholar 

  27. Yuen, T.H., Esgin, M.F., Liu, J.K., Au, M.H., Ding, Z.: Dualring: generic construction of ring signatures with efficient instantiations. In: CRYPTO. pp. 251–281. Springer (2021)

    Google Scholar 

Download references

Acknowledgement

This paper is supported by Australian Research Council (ARC) Discover Project DP220101234 and DP180102199.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Steinfeld, R., Liu, J.K., Esgin, M.F., Liu, D., Ruj, S. (2024). DualRing-PRF: Post-quantum (Linkable) Ring Signatures from Legendre and Power Residue PRFs. In: Zhu, T., Li, Y. (eds) Information Security and Privacy. ACISP 2024. Lecture Notes in Computer Science, vol 14896. Springer, Singapore. https://doi.org/10.1007/978-981-97-5028-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5028-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5027-6

  • Online ISBN: 978-981-97-5028-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics