Skip to main content

A Novel Approach for Subtype Identification via Multi-omics Data Using Adversarial Autoencoder

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2024)

Abstract

Cancer is a complex and heterogeneous disease, and effective diagnosis and treatment require accurate description of tumor subtypes. Traditional cancer identification methods based on clinical and histopathological criteria have limitations in identifying crucial molecular subtypes. In recent years, high-throughput genomics technologies have changed cancer research and made it possible to characterize tumor molecular features on a large scale. The integration of multiple genomic data types is expected to provide a more comprehensive understanding of the potential molecular mechanisms of cancer and facilitate the discovery of new diagnostic and therapeutic targets, but new computational methods need to be developed. In this study, we propose MultiDAAE (Multi-omics Double Adversarial Autoencoder) by combining autoencoders with two discriminators, which forms two generative adversarial networks and is able to more effectively extract features and reduce dimensionality of multi-omics data. Compared to state-of-the-art methods, our approach exhibits excellent clustering performance in multiple cancer datasets. In summary, MultiDAAE can help reveal potential molecular mechanisms and provide insights for the development of personalized cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stingl, J., Caldas, C.: Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat. Rev. Cancer 7(10), 791–799 (2007)

    Article  Google Scholar 

  2. Dai, X., et al.: Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res. 5(10), 2929 (2015)

    Google Scholar 

  3. Xiong, L., Liyue, L., Juan, Z.: Heterogeneity analysis and diagnosis of complex diseases based on deep learning method. Sci. Rep. 8(1), 6155 (2018)

    Article  Google Scholar 

  4. Li, X., et al.: A clustering method unifying cell-type recognition and subtype identification for tumor heterogeneity analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 20(2), 822–832 (2022)

    Article  Google Scholar 

  5. Dienstmann, R., Vermeulen, L., Guinney, J., Kopetz, S., Tejpar, S., Tabernero, J.: Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 17(2), 79–92 (2017)

    Article  Google Scholar 

  6. Reuter, J.A., Spacek, D.V., Snyder, M.P.: High-throughput sequencing technologies. Mol. Cell 58(4), 586–597 (2015)

    Article  Google Scholar 

  7. Tomczak, K., Czerwińska, P., Wiznerowicz, M.: Review the cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemporary Oncology/Współczesna Onkologia 2015(1), 68–77 (2015)

    Article  Google Scholar 

  8. Sammut, S.-J., et al.: Multi-omic machine learning predictor of breast cancer therapy response. Nature 601(7894), 623–629 (2022)

    Article  Google Scholar 

  9. Rappoport, N., Shamir, R.: Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res. 46(20), 10546–10562 (2018)

    Article  Google Scholar 

  10. Ghojogh, B., Ghodsi, A., Karray, F., Crowley, M.: Generative adversarial networks and adversarial autoencoders: Tutorial and survey. arXiv preprint arXiv:2111.13282 (2021)

  11. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)

    Google Scholar 

  12. Otter, D.W., Medina, J.R., Kalita, J.K.: A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Networks Learn. Syst. 32(2), 604–624 (2020)

    Article  MathSciNet  Google Scholar 

  13. Yang, H., Chen, R., Li, D., Wang, Z.: Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data. Bioinformatics 37(16), 2231–2237 (2021)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Gulli, A., Pal, S.: Deep Learning with Keras. Packt Publishing Ltd. (2017)

    Google Scholar 

  16. Martín Abadi, et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  17. Duan, R., et al.: Evaluation and comparison of multi-omics data integration methods for cancer subtyping. PLoS Comput. Biol. 17(8), e1009224 (2021)

    Article  Google Scholar 

  18. Troyanskaya, O., et al.: Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525 (2001)

    Article  Google Scholar 

  19. Hoadley, K.A., et al.: Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173(2), 291–304 (2018)

    Article  Google Scholar 

  20. Frank, E.H.: Regression modeling strategies with applications to linear models, logistic and ordinal regression, and survival analysis (2015)

    Google Scholar 

  21. Campello, R.J.G.B., Hruschka, E.R.: A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets Syst. 157(21), 2858–2875 (2006)

    Article  MathSciNet  Google Scholar 

  22. Picard, M., Scott-Boyer, M.-P., Bodein, A., Périn, O., Droit, A.: Integration strategies of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J. 19, 3735–3746 (2021)

    Article  Google Scholar 

  23. Menyhárt, O., Győrffy, B.: Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Comput. Struct. Biotechnol. J. 19, 949–960 (2021)

    Article  Google Scholar 

  24. Subramanian, I., Verma, S., Kumar, S., Jere, A., Anamika, K.: Multi-omics data integration, interpretation, and its application. Bioinform. Biol. Insights 14, 1177932219899051 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Project of Scientific Research of Hunan Provincial Education Department (No. 22C1397, No. 22A0022), the Natural Science Foundation of Hunan Province (No. 2023JJ30161, No. 2024JJ8004). And it was also supported by the Changsha City takes the lead in major science and technology projects (No. KQ2102002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haowen Chen .

Editor information

Editors and Affiliations

Ethics declarations

Data Availability

The data that support the findings of this study are available from the TCGA request.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 10189 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X. et al. (2024). A Novel Approach for Subtype Identification via Multi-omics Data Using Adversarial Autoencoder. In: Peng, W., Cai, Z., Skums, P. (eds) Bioinformatics Research and Applications. ISBRA 2024. Lecture Notes in Computer Science(), vol 14954. Springer, Singapore. https://doi.org/10.1007/978-981-97-5128-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5128-0_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5127-3

  • Online ISBN: 978-981-97-5128-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics