Skip to main content

Diffusion Review-Based Recommendation

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14888))

  • 354 Accesses

Abstract

Review-based recommender systems have attracted a lot of attention recently because of the rich information entailed in the reviews. These models try to learn representations to model user interest and item features from textual reviews. However, most existing methods usually simply learn the mapping relationships between input data and output labels, which could be unable to effectively model the complex user-item interaction generation process and diverse user interests. Inspired by generative models like diffusion models, in this paper, we propose a Review-based Diffusion Recommendation model (RDRec), which aims to learn more real user interest distribution and simulate user-item interaction generation process. In the forward process, RDRec corrupts the review features by adding Gaussian noise and trains the transformer as the approximator to reconstruct the origin features. Besides, the user’s historical behaviors are also fed into the approximator to combine the user’s other interaction information. In the reverse process, RDRec reverses the corrupted user features in a smaller step as the user interest representation. In this way, the model could capture the user’s diverse interests and learn the user interaction generation process. Experiments are conducted on four benchmark datasets and the results validate our model’s effectiveness in recommender systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, T.B., et al.: Language models are few-shot learners. In: NPIS (2020)

    Google Scholar 

  2. Chen, C., Zhang, M., Liu, Y., Ma, S.: Neural attentional rating regression with review-level explanations. In: WWW, pp. 1583–1592 (2018)

    Google Scholar 

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL, vol. 1, pp. 4171–4186, October 2019

    Google Scholar 

  4. Dong, X., et al.: Asymmetrical hierarchical networks with attentive interactions for interpretable review-based recommendation. In: AAAI, pp. 7667–7674 (2020)

    Google Scholar 

  5. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020). Association for Computing Machinery, New York, NY, USA

    Google Scholar 

  6. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS, vol. 2020-December, pp. 1–25 (2020)

    Google Scholar 

  7. Jin, B., et al.: Sampling-decomposable generative adversarial recommender. In: NIPS 2020, Red Hook, NY, USA (2020)

    Google Scholar 

  8. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering. In: Proceedings of the 2018 World Wide Web Conference, pp. 689–698. WWW, Republic and Canton of Geneva, CHE (2018)

    Google Scholar 

  9. Liu, D., Li, J., Du, B., Chang, J., Gao, R.: DAML: dual attention mutual learning between ratings and reviews for item recommendation. In: SIGKDD, pp. 344–352 (2019)

    Google Scholar 

  10. Liu, H., et al.: Hierarchical multi-view attention for neural review-based recommendation. In: Zhu, X., Zhang, M., Hong, Y., He, R. (eds.) NLPCC, pp. 267–278. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60457-8_22

    Chapter  Google Scholar 

  11. Liu, H., Wang, W., Peng, Q., Wu, N., Wu, F., Jiao, P.: Toward comprehensive user and item representations via three-tier attention network. ACM Trans. Inf. Syst. 39(3), 1–22 (2021)

    Google Scholar 

  12. Liu, H., Wang, W., Peng, Q., Wu, N., Wu, F., Jiao, P.: Toward comprehensive user and item representations via three-tier attention network. In: TOIS, vol. 39, February 2021

    Google Scholar 

  13. Liu, H., Wang, W., Xu, H., Peng, Q., Jiao, P.: Neural unified review recommendation with cross attention. In: SIGIR, pp. 1789–1792, SIGIR 2020 (2020)

    Google Scholar 

  14. Liu, H., et al.: Hybrid neural recommendation with joint deep representation learning of ratings and reviews. Neurocomputing 374, 77–85 (2020)

    Article  Google Scholar 

  15. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. JMLR 9, 2579–2605 (2008)

    Google Scholar 

  16. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating dimensions with review text. In: RecSys, pp. 165–172, RecSys 2013. Association for Computing Machinery, New York, NY, USA (2013)

    Google Scholar 

  17. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: ICML, vol. 139, pp. 8162–8171, 18–24 July 2021

    Google Scholar 

  18. Peng, Q., Liu, H., Yu, Y., Xu, H., Dai, W., Jiao, P.: Mutual self attention recommendation with gated fusion between ratings and reviews. In: Nah, Y., Cui, B., Lee, S.-W., Yu, J.X., Moon, Y.-S., Whang, S.E. (eds.) DASFAA 2020. LNCS, vol. 12114, pp. 540–556. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59419-0_33

    Chapter  Google Scholar 

  19. Peng, Q., Wang, P., Wang, W., Liu, H., Sun, Y., Jiao, P.: NRSA: neural recommendation with summary-aware attention. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds.) KSEM, pp. 128–140. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29551-6_12

  20. Qiu, Z., Wu, X., Gao, J., Fan, W.: U-BERT: pre-training user representations for improved recommendation. In: AAAI (2021). www.aaai.org

  21. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: ICML, pp. 10684–10695 (2022)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: MICCAI, vol. abs/1505.04597 (2015)

    Google Scholar 

  23. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS, pp. 1–8 (2008)

    Google Scholar 

  24. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: ICLR, pp. 1–22 (2021)

    Google Scholar 

  25. Wang, W., Xu, Y., Feng, F., Lin, X., He, X., Chua, T.S.: Diffusion recommender model. In: SIGIR, vol. 1. Association for Computing Machinery (2023)

    Google Scholar 

  26. Wu, C., Wu, F., Qi, T., Ge, S., Huang, Y., Xie, X.: Reviews meet graphs: enhancing user and item representations for recommendation with hierarchical attentive graph neural network. In: EMNLP-IJCNLP, pp. 4884–4893 (2019)

    Google Scholar 

  27. Wu, L., Quan, C., Li, C., Wang, Q., Zheng, B.: A context-aware user-item representation learning for item recommendation. In: TOIS, vol. 37, pp. 1–29 (2017)

    Google Scholar 

  28. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. CSUR 52(1), 1–38 (2019)

    Article  Google Scholar 

  29. Zheng, L., Noroozi, V., Yu, P.S.: Joint deep modeling of users and items using reviews for recommendation. In: WSDM, pp. 425–433 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the Project of Shenzhen Higher Education Stability Support Program (No. 20220618160306001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueheng Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, X., Peng, Q., Shao, M., Sun, Y. (2024). Diffusion Review-Based Recommendation. In: Cao, C., Chen, H., Zhao, L., Arshad, J., Asyhari, T., Wang, Y. (eds) Knowledge Science, Engineering and Management. KSEM 2024. Lecture Notes in Computer Science(), vol 14888. Springer, Singapore. https://doi.org/10.1007/978-981-97-5489-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5489-2_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5488-5

  • Online ISBN: 978-981-97-5489-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics