Skip to main content

DICES: Diffusion-Based Contrastive Learning with Knowledge Graphs for Recommendation

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14885))

  • 614 Accesses

Abstract

The effectiveness of Knowledge Graphs (KGs) in enhancing recommendation systems has been recognized. However, the effectiveness of KG-enhanced recommendations is often hampered by issues of entity sparsity and noise. To address these challenges, we propose a Diffusion-based Contrastive Learning with Knowledge Graphs for Recommendation (DICES). Our method combines diffusion models with multi-level contrastive learning approaches, aiming to enhance the performance of existing recommendation systems. By utilizing diffusion models, we ensure that the generated augmented samples are context-aware, thereby increasing the robustness of contrastive learning. Additionally, we introduce a multi-level contrastive learning approach to improve recommendation accuracy. Finally, we design a joint training framework to optimize both the recommendation task and the multi-level contrastive learning tasks, further enhancing the overall effectiveness of the recommendation system. Extensive experiments on multiple benchmark datasets demonstrate that our DICES framework significantly outperforms existing state-of-the-art methods in scenarios with sparse user-item interactions and noisy KG data.

H. Dong and H. Liang—Contributed equally to this work.

Corresponding authors: Jing Yu (yujing02@iie.ac.cn).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 1–19 (2009)

    Google Scholar 

  2. Li, Y., Yin, H., Gai, K., Zhu, L., Wang, Q.: Blockchain-as-a-service powered knowledge graph construction. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, S.-Y. (eds.) KSEM 2021. LNCS (LNAI), vol. 12817, pp. 500–511. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82153-1_41

  3. Zhang, Y., Gai, K., Wei, Y., Zhu, L.: BS-KGS: blockchain sharding empowered knowledge graph storage. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, S.-Y. (eds.) KSEM 2021. LNCS (LNAI), vol. 12817, pp. 451–462. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82153-1_37

  4. Jaiswal, A., Babu, A.R., Zadeh, M.Z., Banerjee, D., Makedon, F.: A survey on contrastive self-supervised learning. Technologies 9(1), 2 (2020)

    Google Scholar 

  5. Chen, G., Xie, X.: ML-KGCL: multi-level knowledge graph contrastive learning for recommendation. In: Wang, X., et al. (eds.) DASFAA 2023, Part II, pp. 253–268. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30672-3_17

  6. Wang, X., He, X., Cao, Y., et al.: KGAT: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on KDD, pp. 950–958 (2019)

    Google Scholar 

  7. Tian, Y., Yang, Y., Ren, X., et al.: Joint knowledge pruning and recurrent graph convolution for news recommendation. In: Proceedings of the 44th ACM SIGIR, pp. 51–60 (2021)

    Google Scholar 

  8. Liu, H., Zhu, Y., Wu, Z.: Knowledge graph-based behavior denoising and preference learning for sequential recommendation. IEEE Trans. Knowl. Data Eng. (2023)

    Google Scholar 

  9. Xu, L., Tian, Z., Zhang, G., et al.: Towards a more user-friendly and easy-to-use benchmark library for recommender systems. In: Proceedings of the 46th ACM SIGI, pp. 2837–2847 (2023)

    Google Scholar 

  10. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd ACM SIGIR, pp. 639–648 (2020)

    Google Scholar 

  11. Wu, J., Wang, X., Feng, F., et al.: Self-supervised graph learning for recommendation. In: Proceedings of the 44th ACM SIGIR, pp. 726–735 (2021)

    Google Scholar 

  12. Zhang, F., Yuan, N.J., Lian, D., et al.: Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on KDD, pp. 353–362 (2016)

    Google Scholar 

  13. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th WWW, pp. 1067–1077 (2015)

    Google Scholar 

  14. Wang, H., Zhao, M., Xie, X., Li, W., Guo, M.: Knowledge graph convolutional networks for recommender systems. In: WWW, pp. 3307–3313 (2019)

    Google Scholar 

  15. Yang, Y., Huang, C., Xia, L., Li, C.: Knowledge graph contrastive learning for recommendation. In: Proceedings of the 45th ACM SIGIR, pp. 1434–1443 (2022)

    Google Scholar 

  16. Zou, D., Wei, W., Mao, X.-L., et al.: Multi-level cross-view contrastive learning for knowledge-aware recommender system. In: Proceedings of the 45th ACM SIGIR, pp. 1358–1368 (2022)

    Google Scholar 

  17. Wang, H., Zhang, F., Zhao, M., et al.: Multi-task feature learning for knowledge graph enhanced recommendation. In: WWW, pp. 2000–2010 (2019)

    Google Scholar 

  18. Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network embedding for recommendation. IEEE Trans. KDE, 31(2), 357–370 (2018)

    Google Scholar 

  19. Yu, X., Ren, X., Sun, Y., et al.: Personalized entity recommendation: a heterogeneous information network approach. In: Proceedings of the 7th ACM WSDM, pp. 283–292 (2014)

    Google Scholar 

  20. Wang, X., Huang, T., Wang, D., et al.: Learning intents behind interactions with knowledge graph for recommendation. Proc. WWW 2021, 878–887 (2021)

    Google Scholar 

  21. Wei, W., Huang, C., Xia, L., et al.: Contrastive meta learning with behavior multiplicity for recommendation. In: Proceedings of the 15th ACM WSDM, pp. 1120–1128 (2022)

    Google Scholar 

  22. Wang, W., Xu, Y., Feng, F., et al.: Diffusion recommender model. In: Proceedings of the 46th ACM SIGIR, pp. 832–841 (2023)

    Google Scholar 

  23. Jiang, Y., Yang, Y., Xia, L., Huang, C.: Diffkg: knowledge graph diffusion model for recommendation. In: Proceedings of the 17th ACM WSDM, pp. 313–321 (2024)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Key Research and Development Program of China (Grant No. 2021YFB2701300), the National Natural Science Foundation of China (Grant No. 62372044), and the Open Topics of Key Laboratory of Blockchain Technology and Data Security, The Ministry of Industry and Information Technology of the People’s Republic of China(Grant No. 20242217).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Yu or Keke Gai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, H., Liang, H., Yu, J., Gai, K. (2024). DICES: Diffusion-Based Contrastive Learning with Knowledge Graphs for Recommendation. In: Cao, C., Chen, H., Zhao, L., Arshad, J., Asyhari, T., Wang, Y. (eds) Knowledge Science, Engineering and Management. KSEM 2024. Lecture Notes in Computer Science(), vol 14885. Springer, Singapore. https://doi.org/10.1007/978-981-97-5495-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5495-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5494-6

  • Online ISBN: 978-981-97-5495-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics