Skip to main content

WaveSegNet: Wavelet Transform and Multi-scale Focusing Network for Scrap Steel Segmentation

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14887))

Abstract

Scrap steel is a green renewable resource that can be infinitely recycled, and its recycling is of great significance in reducing carbon emissions and promoting the green transformation of the steel industry. However, the current scrap steel recycling faces a series of challenges, such as high labor intensity and occupational risks for inspectors, complex and diverse sources of scrap steel, varying types of materials, and difficulties in quantifying and standardizing manual visual inspection and rating. To overcome these challenges, we propose WaveSegNet, which is based on wavelet transform and multi-scale focusing structure for scrap steel segmentation. Firstly, we utilize wavelet transform to process images and extract features at different frequencies to capture details and structural information in the images. Secondly, we introduce a mechanism of multi-scale focusing to further enhance the accuracy of segmentation by extracting and perceiving features at different scales. Through experiments conducted on public dataset Cityscapes and scrap steel dataset, we have found that WaveSegNet demonstrates outstanding performance and efficiency in the field of semantic segmentation, outperforming other advanced models. These experimental results attest to the immense potential of WaveSegNet in intelligent rating and provide a new solution for the scrap steel recycling industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akram, R., Ibrahim, R.L., Wang, Z., Adebayo, T.S., Irfan, M.: Neutralizing the surging emissions amidst natural resource dependence, eco-innovation, and green energy in g7 countries: insights for global environmental sustainability. J. Environ. Manag. 344, 118560 (2023)

    Article  Google Scholar 

  2. Bracewell, R., Kahn, P.B.: The Fourier transform and its applications. Am. J. Phys. 34(8), 712–712 (1966)

    Article  Google Scholar 

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  4. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv abs/1706.05587 (2017). https://api.semanticscholar.org/CorpusID:22655199

  5. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  6. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  7. Geng, Z., Guo, M.H., Chen, H., Li, X., Wei, K., Lin, Z.: Is attention better than matrix decomposition? arXiv preprint arXiv:2109.04553 (2021)

  8. Guo, M.H., Lu, C.Z., Hou, Q., Liu, Z., Cheng, M.M., Hu, S.M.: SegNext: rethinking convolutional attention design for semantic segmentation. In: Advances in Neural Information Processing Systems, vol. 35, pp. 1140–1156 (2022)

    Google Scholar 

  9. Huang, H., He, R., Sun, Z., Tan, T.: Wavelet-SRNet: a wavelet-based CNN for multi-scale face super resolution. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1698–1706 (2017). https://doi.org/10.1109/ICCV.2017.187

  10. Jain, J., Li, J., Chiu, M.T., Hassani, A., Orlov, N., Shi, H.: OneFormer: one transformer to rule universal image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2989–2998 (2023)

    Google Scholar 

  11. Kim, C.W., Kim, H.G.: Study on automated scrap-sorting by an image processing technology. Adv. Mater. Res. 26, 453–456 (2007)

    Article  Google Scholar 

  12. Lee, Y., Kim, J., Willette, J., Hwang, S.J.: MpViT: multi-path vision transformer for dense prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7287–7296 (2022)

    Google Scholar 

  13. Liang, X., Shen, X., Xiang, D., Feng, J., Lin, L., Yan, S.: Semantic object parsing with local-global long short-term memory. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3185–3193 (2016)

    Google Scholar 

  14. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration (2018)

    Google Scholar 

  15. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  16. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  18. Ma, H., Liu, D., Xiong, R., Wu, F.: iWave: CNN-based wavelet-like transform for image compression. IEEE Trans. Multimedia 22(7), 1667–1679 (2020). https://doi.org/10.1109/TMM.2019.2957990

    Article  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Wieczorek, T., Pilarczyk, M.: Classification of steel scrap in the EAF process using image analysis methods. Arch. Metall. Mater. 53(2), 613–617 (2008)

    Google Scholar 

  21. Wu, T., Li, W., Jia, S., Dong, Y., Zeng, T.: Deep multi-level wavelet-CNN denoiser prior for restoring blurred image with Cauchy noise. IEEE Sig. Process. Lett. 27, 1635–1639 (2020). https://doi.org/10.1109/LSP.2020.3023299

    Article  Google Scholar 

  22. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: Advances in Neural Information Processing Systems, vol. 34 , pp. 12077–12090 (2021)

    Google Scholar 

  23. Xu, G., Li, M., Xu, J.: Application of machine learning in automatic grading of deep drawing steel quality. J. Eng. Sci. 44(6), 1062–1071 (2022)

    Google Scholar 

  24. Xu, W., et al.: Classification and rating of steel scrap using deep learning. Eng. Appl. Artif. Intell. 123, 106241 (2023)

    Article  Google Scholar 

  25. Zhang, C., Kim, J.: Modeling long-and short-term temporal context for video object detection. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 71–75. IEEE (2019)

    Google Scholar 

  26. Zhang, H., Li, F., Xu, H., Huang, S., Liu, S., Ni, L.M., Zhang, L.: Mp-former: mask-piloted transformer for image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18074–18083 (2023)

    Google Scholar 

Download references

Acknowledgements

This paper is funded by Supported projects of key R &D programs in Hebei Province (No. 21373802D) and Artificial Intelligence Collaborative Education Project of the Ministry of Education (201801003011).

The GPU server in this article is jointly funded by Shijiazhuang Wusou Network Technology Co., Ltd. and Hebei Rouzun Technology Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, J., Xu, Y., Liu, C. (2024). WaveSegNet: Wavelet Transform and Multi-scale Focusing Network for Scrap Steel Segmentation. In: Cao, C., Chen, H., Zhao, L., Arshad, J., Asyhari, T., Wang, Y. (eds) Knowledge Science, Engineering and Management. KSEM 2024. Lecture Notes in Computer Science(), vol 14887. Springer, Singapore. https://doi.org/10.1007/978-981-97-5501-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5501-1_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5500-4

  • Online ISBN: 978-981-97-5501-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics