Skip to main content

Disentangled Representations for Cross-Domain Recommendation via Heterogeneous Graph Contrastive Learning

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14852))

Included in the following conference series:

  • 187 Accesses

Abstract

Cross-Domain Recommendation can significantly mitigate the challenges posed by sparse data for recommendation systems. Relevant studies indicate domain-specific preferences negatively impact the recommendation performance of target domains based on domain-shared information. Recent research considers domain-invariant and domain-specific features. Nevertheless, these intricately entangled features are hardly discerned for differentiation and the semantic diversity in heterogeneous relationships tends to be understated. In light of this, a novel model entitled Disentangled Representations for Cross-Domain Recommendation via Heterogeneous Graph Contrastive Learning (DHCL) is proposed. We derive domain-invariant and domain-specific representations, capturing both commonalities and unique features across diverse domains. Heterogeneous graph and meta-path are used to assist in enhancing the amount of information. We formulate dual contrastive learning tasks to further obtain optimal disentangled representations. Comprehensive experiments on three pairs of authentic review datasets highlight the superiority of DHCL over SOTA recommendation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://nijianmo.github.io/amazon/index.html

References

  1. Yin H, Wang Q, et al.: Overcoming data sparsity in group recommendation. In: TKDE, 34(7), pp. 3447-3460 (2020).

    Google Scholar 

  2. Zhu F, Wang Y, et al.: Cross-domain recommendation: challenges, progress, and prospects. arXiv Preprint arXiv:2103.01696 (2021).

  3. Zang T, Zhu Y, et al.: A survey on cross-domain recommendation: taxonomies, methods, and future directions. In: TOIS, 41(2), pp. 1-39(2022).

    Google Scholar 

  4. Zhang R, Zang T, et al.: Disentangled contrastive learning for cross-domain recommendation. In: DASFAA, pp. 163-178 (2023).

    Google Scholar 

  5. Xin Wang, et al.: Disentangled representation learning for recommendation. In: TPAMI, pp. 408-424 (2022).

    Google Scholar 

  6. Zhu F, Chen C, et al.: Dtcdr: A framework for dual-target cross-domain recommendation. In: CIKM, pp. 1533-1542 (2019).

    Google Scholar 

  7. Zhu Y, Tang Z, et al.: Personalized transfer of user preferences for cross-domain recommendation. In: WSDM, pp. 1507-1515 (2022).

    Google Scholar 

  8. Chen M, et al.: HGCL: Heterogeneous graph contrastive learning for recommendation. In: WSDM, pp. 544-552 (2023).

    Google Scholar 

  9. He X, Liao L, Zhang H, Nie L, Hu X, et al. Neural collaborative filtering. In: WWW, pp. 173-182 (2017).

    Google Scholar 

  10. Zhang C, Song D, Huang C, Swami Ananthram, et al.: Heterogeneous graph neural network. In: KDD, pp. 793-803 (2019).

    Google Scholar 

  11. Yu J, Yin H, et al. Are graph augmentations necessary? simple graph contrastive learning for recommendation. In: SIGIR pp. 1294-1303 (2022).

    Google Scholar 

  12. Guo L, Lu Z, Yu J, et al.: Prompt-enhanced federated content representation learning for cross-domain recommendation. arXiv preprint arXiv:2401.14678, 2024.

  13. Hao B, Yang C, Guo L, et al.: Motif-based prompt learning for universal cross-domain recommendation. In: WSDM, pp. 257-265 (2024).

    Google Scholar 

  14. Liu H, Guo L, Zhu L, et al.: MCRPL: A Pretrain, prompt, and fine-tune paradigm for non-overlapping many-to-one cross-domain recommendation. In: TOIS, pp. 1-24 (2024).

    Google Scholar 

  15. Guo L, Zhang J, Tang L, et al.: Time interval-enhanced graph neural network for shared-account cross-domain sequential recommendation. In: TNNLs, pp. 4002 - 4016 (2023).

    Google Scholar 

  16. Guo L, Zhang J, Chen T, et al.: Reinforcement learning-enhanced shared-account cross-domain sequential recommendation. In: TKDE, pp. 7397 - 7411 (2022).

    Google Scholar 

  17. Liu Y, Xuan H, Li B, et al.: Self-Supervised Dynamic Hypergraph Recommendation based on Hyper-Relational Knowledge Graph. In: CIKM, pp. 1617-1626 (2023).

    Google Scholar 

  18. Yan H, Chen X, Gao C, et al.: Deepapf: Deep attentive probabilistic factorization for multi-site video recommendation. In: IJCAI, pp. 17-883 (2019).

    Google Scholar 

  19. Singh A P, Gordon G J. Relational learning via collective matrix factorization. In: SIGKDD, pp. 650-658 (2008).

    Google Scholar 

  20. Hu G, Zhang Y, Yang Q. Conet: Collaborative cross networks for cross-domain recommendation. In: CIKM, pp. 667-676 (2018).

    Google Scholar 

  21. Yu X, Peng Q, et al.: A selective ensemble learning based two-sided cross-domain collaborative filtering algorithm. In: IPM, 58(6), 102691 (2021).

    Google Scholar 

  22. Liu M, Li J, et al.: Bi-TGCF: Cross domain recommendation via bi-directional transfer graph collaborative filtering networks. In: CIKM, pp. 885-894 (2020).

    Google Scholar 

  23. Li P, Tuzhilin A, et al.: Ddtcdr: Deep dual transfer cross domain recommendation. In: WSDM, pp. 331-339 (2020).

    Google Scholar 

  24. Zhao C, Li C, et al.: Cross-domain recommendation via preference propagation graphNet. In: CIKM, pp. 2165-2168 (2019).

    Google Scholar 

  25. Z X, et al.: Multi-sparse-domain collaborative recommendation via enhanced comprehensive aspect preference learning. In: WSDM, pp. 1452-60 (2022).

    Google Scholar 

  26. Cui Q, Wei T, et al.: HeroGRAPH: A heterogeneous graph framework for multi-target cross-domain recommendation. In: RecSys (2020).

    Google Scholar 

  27. Wu J, Wang X, et al.: Self-supervised graph learning for recommendation. In: SIGIR, pp. 726-735 (2021).

    Google Scholar 

  28. Wang X, Jin H, Zhang A, et al.: Disentangled graph collaborative filtering. In: SIGIR, pp. 1001-1010 (2020).

    Google Scholar 

  29. Jianxin Ma, et al.: Learning disentangled representations for recommendation. In NeurIPS, pp. 5711-5722 (2019).

    Google Scholar 

  30. Xiao, S., Zhu, D., Tang, C. et al.: Combining Graph Contrastive Embedding and Multi-head Cross-Attention Transfer for Cross-Domain Recommendation. Data Sci. Eng. 8, 247-262 (2023).

    Article  MATH  Google Scholar 

  31. Xuan H, Liu Y, Li B, et al.: Knowledge enhancement for contrastive multi-behavior recommendation. In: WSDM, pp. 195-203 (2023).

    Google Scholar 

  32. Yu J, Xia X., et al.: XSimGCL: Towards extremely simple graph contrastive learning for recommendation. In: TKDE (2023).

    Google Scholar 

  33. Li A, Zang Y, Wang Y, et al.: Leveraging Interactive Paths for Sequential Recommendation. In: DASFAA, pp. 521-536 (2023).

    Google Scholar 

  34. Xia X, Yin H, et al.: Self-supervised hypergraph convolutional networks for session-based recommendation. In: AAAI, vol. 35(5), pp. 4503-4511 (2021).

    Google Scholar 

  35. Z K, et al.: S3-Rec: Self-supervised learning for sequential recommendation with mutual information maximization. In: ICKM, pp. 1893-1902 (2020).

    Google Scholar 

  36. Yang Y, Huang C, et al.: Knowledge graph contrastive learning for recommendation. In: SIGIR, pp. 1434-1443 (2022).

    Google Scholar 

  37. He X, Deng K, et al.: Lightgcn: Simplifying and powering graph convolution network for recommendation. In: SIGIR, pp. 639-648 (2020).

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the "14th Five-Year Plan" Civil Aerospace Pre-Research Project of China under Grant No. D020101, the Natural Science Foundation of China No. 62302213, Innovation Funding of Key Laboratory of Intelligent Decision and Digital Operations No. NJ2023027, Ministry of Industrial and Information Technology Project of Hebei Key Laboratory of Software Engineering, No. 22567637H, the Natural Science Foundation of Jiangsu Province under Grant No. BK20210280.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Li, B., Chen, Y., Li, X., Xu, S., Yin, H. (2025). Disentangled Representations for Cross-Domain Recommendation via Heterogeneous Graph Contrastive Learning. In: Onizuka, M., et al. Database Systems for Advanced Applications. DASFAA 2024. Lecture Notes in Computer Science, vol 14852. Springer, Singapore. https://doi.org/10.1007/978-981-97-5555-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5555-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5554-7

  • Online ISBN: 978-981-97-5555-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics