Skip to main content

E&S-Gainer: An Emotion Aware and Strategy Enhanced Model for Emotional Support Conversation

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14854))

Included in the following conference series:

  • 448 Accesses

Abstract

The Emotional Support Conversation (ESC) task aims to alleviate emotional distress in seekers and offer them an outlet for expressing their aggravation, garnering considerable attention in recent years. In ESC, accurately discerning the seeker’s emotional state is crucial, along with the strategic selection of appropriate support measures at various stages of the conversation to provide comfort. Previous methods fail to intricately delineate the objectives of the emotion support task, thereby hindering the supporter from crafting contextually fitting responses in each round, informed by both strategies and the user’s prevailing emotional state. To tackle this challenge, we propose a novel model, E&S-Gainer, leveraging LLaMA2’s inferential content from the conversation history to aid in training the model for improved emotional perception and strategy planning capabilities. Specifically, we devise few-shot and zero-shot prompts to harness LLaMA2 for generating stage-specific goals and pseudo-emotion labels, facilitating the separate training of the strategy-enhanced encoder and emotion-aware encoder. Additionally, we design a strategy-planning decoder explicitly incorporating strategies to guide response generation. Both automatic and human evaluations conducted on a prominent benchmark dataset attest to the superior performance of E&S-Gainer in terms of strategy selection and response generation. Our code is accessible at https://github.com/Whigle99/ES-Gainer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://huggingface.co/meta-LLaMA/LLaMA-2-7b

  2. 2.

    https://huggingface.co/facebook/blenderbot_small-90M

References

  1. Bosselut, A., Rashkin, H., Sap, M., Malaviya, C., Celikyilmaz, A., Choi, Y.: COMET: commonsense transformers for automatic knowledge graph construction. In: ACL 2019, pp. 4762–4779 (2019)

    Google Scholar 

  2. Cheng, J., Sabour, S., Sun, H., Chen, Z., Huang, M.: PAL: persona-augmented emotional support conversation generation. In: ACL, pp. 535–554 (2023)

    Google Scholar 

  3. Cheng, Y., et al.: Improving multi-turn emotional support dialogue generation with lookahead strategy planning. In: EMNLP, pp. 3014–3026. Association for Computational Linguistics (2022)

    Google Scholar 

  4. Chiang, W.L., et al.: Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. See https://vicuna lmsys. org (Accessed 14 April 2023)

    Google Scholar 

  5. Hill, C.E.: Helping Skills: Facilitating, Exploration, Insight, and Action. American Psychological Association (2009)

    Google Scholar 

  6. Huang, J.t., et al.: Emotionally numb or empathetic? evaluating how llms feel using emotionbench. arXiv preprint arXiv:2308.03656 (2023)

  7. Jiang, S., et al.: Resprompt: Residual connection prompting advances multi-step reasoning in large language models. arXiv preprint arXiv:2310.04743 (2023)

  8. Kim, T., Vossen, P.: Emoberta: Speaker-aware emotion recognition in conversation with roberta. CoRR abs/2108.12009 (2021). https://arxiv.org/abs/2108.12009

  9. Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B.: A diversity-promoting objective function for neural conversation models. In: NAACL HLT, pp. 110–119. The Association for Computational Linguistics (2016)

    Google Scholar 

  10. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text summarization branches out, pp. 74–81 (2004)

    Google Scholar 

  11. Lin, Z., et al.: Moel: mixture of empathetic listeners. In: EMNLP-IJCNLP, pp. 121–132 (2019)

    Google Scholar 

  12. Liu, S., et al.: Towards emotional support dialog systems. In: ACL/IJCNLP 2021, pp. 3469–3483. Association for Computational Linguistics (2021)

    Google Scholar 

  13. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. corr abs/1711.05101 (2017). arXiv preprint arXiv:1711.05101 (2017)

  14. Majumder, N., et al.: MIME: mimicking emotions for empathetic response generation. In: EMNLP, pp. 8968–8979 (2020)

    Google Scholar 

  15. Papineni, K., Roukos, S., Ward, T., Zhu, W.: Bleu: a method for automatic evaluation of machine translation. In: ACL, pp. 311–318 (2002)

    Google Scholar 

  16. Peng, W., Hu, Y., Xing, L., Xie, Y., Sun, Y., Li, Y.: Control globally, understand locally: a global-to-local hierarchical graph network for emotional support conversation. In: IJCAI 2022, pp. 4324–4330. ijcai.org (2022)

    Google Scholar 

  17. Peng, W., Qin, Z., Hu, Y., Xie, Y., Li, Y.: FADO: feedback-aware double controlling network for emotional support conversation. Knowl. Based Syst. 264, 110340 (2023). https://doi.org/10.1016/j.knosys.2023.110340

  18. Poria, S., Majumder, N., Mihalcea, R., Hovy, E.: Emotion recognition in conversation: research challenges, datasets, and recent advances. IEEE Access 7, 100943–100953 (2019)

    Google Scholar 

  19. Rashkin, H., Smith, E.M., Li, M., Boureau, Y.: Towards empathetic open-domain conversation models: a new benchmark and dataset. In: ACL 2019, pp. 5370–5381. Association for Computational Linguistics (2019)

    Google Scholar 

  20. Roller, S., et al.: Recipes for building an open-domain chatbot. In: EACL 2021, pp. 300–325 (2021)

    Google Scholar 

  21. Shen, S., et al.: Multiview contextual commonsense inference: A new dataset and task. CoRR abs/2210.02890 (2022), https://doi.org/10.48550/arXiv.2210.02890

  22. Touvron, H., et al.: Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)

  23. Touvron, H., et al.: Llama 2: open foundation and fine-tuned chat models (2023)

    Google Scholar 

  24. Tu, Q., Li, Y., Cui, J., Wang, B., Wen, J., Yan, R.: MISC: a mixed strategy-aware model integrating COMET for emotional support conversation. In: ACL 2022, pp. 308–319. Association for Computational Linguistics (2022)

    Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, pp. 5998–6008 (2017)

    Google Scholar 

  26. Zhang, Y., et al.: Dialoguellm: Context and emotion knowledge-tuned llama models for emotion recognition in conversations. arXiv preprint arXiv:2310.11374 (2023)

  27. Zhao, W., Zhao, Y., Wang, S., Qin, B.: Transesc: smoothing emotional support conversation via turn-level state transition. In: ACL, pp. 6725–6739 (2023)

    Google Scholar 

  28. Zheng, C., Sabour, S., Wen, J., Zhang, Z., Huang, M.: Augesc: dialogue augmentation with large language models for emotional support conversation. In: Findings of the Association for Computational Linguistics: ACL 2023, pp. 1552–1568 (2023)

    Google Scholar 

  29. Zhou, H., Huang, M., Zhang, T., Zhu, X., Liu, B.: Emotional chatting machine: emotional conversation generation with internal and external memory. In: AAAI 2018, pp. 730–739. AAAI Press (2018)

    Google Scholar 

  30. Zhou, P., et al.: Think before you speak: explicitly generating implicit commonsense knowledge for response generation. In: ACL 2022, pp. 1237–1252 (2022)

    Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (62172086, 62272092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daling Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, C., Wang, D., Feng, S., Zhang, Y., Yu, G. (2024). E&S-Gainer: An Emotion Aware and Strategy Enhanced Model for Emotional Support Conversation. In: Onizuka, M., et al. Database Systems for Advanced Applications. DASFAA 2024. Lecture Notes in Computer Science, vol 14854. Springer, Singapore. https://doi.org/10.1007/978-981-97-5569-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5569-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5568-4

  • Online ISBN: 978-981-97-5569-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics