Skip to main content

RoNID: New Intent Discovery with Generated-Reliable Labels and Cluster-friendly Representations

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14854))

Included in the following conference series:

  • 325 Accesses

Abstract

New Intent Discovery (NID) strives to identify known and reasonably deduce novel intent groups in the open-world scenario. But current methods face issues with inaccurate pseudo-labels and poor representation learning, creating a negative feedback loop that degrades overall model performance, including accuracy and the adjusted rand index. To address the aforementioned challenges, we propose a Robust New Intent Discovery (RoNID) framework optimized by an EM-style method, which focuses on constructing reliable pseudo-labels and obtaining cluster-friendly discriminative representations. RoNID comprises two main modules: reliable pseudo-label generation module and cluster-friendly representation learning module. Specifically, the pseudo-label generation module assigns reliable synthetic labels by solving an optimal transport problem in the E-step, which effectively provides high-quality supervised signals for the input of the cluster-friendly representation learning module. To learn cluster-friendly representation with strong intra-cluster compactness and large inter-cluster separation, the representation learning module combines intra-cluster and inter-cluster contrastive learning in the M-step to feed more discriminative features into the generation module. RoNID can be performed iteratively to ultimately yield a robust model with reliable pseudo-labels and cluster-friendly representations. Experimental results on multiple benchmarks demonstrate our method brings substantial improvements over previous state-of-the-art methods by a large margin of +1\(\sim \)+4 points.

S. Zhang and C. Yan—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We estimate the number of K based on prior works [42] to ensure a fair comparison.

  2. 2.

    https://www.kaggle.com/c/predict-closed-questions-on-stackoverflow/

  3. 3.

    https://huggingface.co/bert-base-uncased

References

  1. An, W., Tian, F., Zheng, Q., Ding, W., Wang, Q., Chen, P.: Generalized category discovery with decoupled prototypical network. In: Proceedings of AAAI (2023)

    Google Scholar 

  2. Asano, Y.M., Rupprecht, C., Vedaldi, A.: Self-labelling via simultaneous clustering and representation learning. In: Proceedings of ICLR (2020)

    Google Scholar 

  3. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of ECCV (2018)

    Google Scholar 

  4. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: Proceedings of NeurIPS (2020)

    Google Scholar 

  5. Casanueva, I., Temčinas, T., Gerz, D., Henderson, M., Vulić, I.: Efficient intent detection with dual sentence encoders. In: Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI (2020)

    Google Scholar 

  6. Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  7. Chen, Q., Zhuo, Z., Wang, W.: Bert for joint intent classification and slot filling. arXiv preprint arXiv:1902.10909 (2019)

  8. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of ICML (2020)

    Google Scholar 

  9. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of NeurIPS (2013)

    Google Scholar 

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of AACL (2019)

    Google Scholar 

  11. Gowda, K.C., Krishna, G.: Agglomerative clustering using the concept of mutual nearest neighbourhood. Pattern recognition (1978)

    Google Scholar 

  12. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: Proceedings of NeurIPS (2017)

    Google Scholar 

  13. Hsu, Y.C., Lv, Z., Kira, Z.: Learning to cluster in order to transfer across domains and tasks. arXiv preprint arXiv:1711.10125 (2017)

  14. Khosla, P., et al.: Supervised contrastive learning. In: Proceedings of NeurIPS (2020)

    Google Scholar 

  15. Kumar, R., Patidar, M., Varshney, V., Vig, L., Shroff, G.: Intent detection and discovery from user logs via deep semi-supervised contrastive clustering. In: Proceedings of NAACL (2022)

    Google Scholar 

  16. Larson, S., et al.: An evaluation dataset for intent classification and out-of-scope prediction. arXiv preprint arXiv:1909.02027 (2019)

  17. Li, J., Zhou, P., Xiong, C., Hoi, S.C.H.: Prototypical contrastive learning of unsupervised representations. In: Proceedings of ICLR (2021)

    Google Scholar 

  18. Lin, T.E., Xu, H., Zhang, H.: Discovering new intents via constrained deep adaptive clustering with cluster refinement. In: Proceedings of AAAI (2020)

    Google Scholar 

  19. Liu, B., Mazumder, S.: Lifelong and continual learning dialogue systems: learning during conversation. In: Proceedings of AAAI (2021)

    Google Scholar 

  20. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability (1967)

    Google Scholar 

  21. Min, Q., Qin, L., Teng, Z., Liu, X., Zhang, Y.: Dialogue state induction using neural latent variable models. arXiv preprint arXiv:2008.05666 (2020)

  22. Mo, Y., et al.: MCL-NER: cross-lingual named entity recognition via multi-view contrastive learning. In: Proceedings of AAAI (2024)

    Google Scholar 

  23. Padmasundari, S.B.: Intent discovery through unsupervised semantic text clustering. Proc. Interspeech 2018 (2018)

    Google Scholar 

  24. Peyré, G., Cuturi, M., et al.: Computational optimal transport: With applications to data science. Foundations and Trends® in Machine Learning (2019)

    Google Scholar 

  25. Shi, W., An, W., Tian, F., Zheng, Q., Wang, Q., Chen, P.: A diffusion weighted graph framework for new intent discovery. arXiv preprint arXiv:2310.15836 (2023)

  26. Taherkhani, F., Dabouei, A., Soleymani, S., Dawson, J.M., Nasrabadi, N.M.: Transporting labels via hierarchical optimal transport for semi-supervised learning. In: Proc. of ECCV (2020)

    Google Scholar 

  27. Tai, K.S., Bailis, P., Valiant, G.: Sinkhorn label allocation: Semi-supervised classification via annealed self-training. In: Proc. of ICML (2021)

    Google Scholar 

  28. Vaze, S., Han, K., Vedaldi, A., Zisserman, A.: Generalized category discovery. In: Proc. of CVPR (2022)

    Google Scholar 

  29. Wang, Z., Chai, L., Yang, J., Bai, J., Yin, Y., Liu, J., Guo, H., Li, T., Yang, L., Li, Z., et al.: Mt4crossoie: Multi-stage tuning for cross-lingual open information extraction. arXiv preprint arXiv:2308.06552 (2023)

  30. Wu, C.S., Madotto, A., Hosseini-Asl, E., Xiong, C., Socher, R., Fung, P.: Transferable multi-domain state generator for task-oriented dialogue systems. In: Proc. of ACL (2019)

    Google Scholar 

  31. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: Proc. of ICML (2016)

    Google Scholar 

  32. Xu, J., Wang, P., Tian, G., Xu, B., Zhao, J., Wang, F., Hao, H.: Short text clustering via convolutional neural networks. In: Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing (2015)

    Google Scholar 

  33. Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: Simultaneous deep learning and clustering. In: Proc. of ICML (2017)

    Google Scholar 

  34. Yang, J., Guo, H., Yin, Y., Bai, J., Wang, B., Liu, J., Liang, X., Cahi, L., Yang, L., Li, Z.: m3p: Towards multimodal multilingual translation with multimodal prompt. arXiv preprint arXiv:2403.17556 (2024)

  35. Yang, J., Huang, S., Ma, S., Yin, Y., Dong, L., Zhang, D., Guo, H., Li, Z., Wei, F.: CROP: zero-shot cross-lingual named entity recognition with multilingual labeled sequence translation. In: Proc. of EMNLP Findings (2022)

    Google Scholar 

  36. Yang, J., Ma, S., Dong, L., Huang, S., Huang, H., Yin, Y., Zhang, D., Yang, L., Wei, F., Li, Z.: Ganlm: Encoder-decoder pre-training with an auxiliary discriminator. In: Proc. of ACL (2023)

    Google Scholar 

  37. Yang, J., Ma, S., Huang, H., Zhang, D., Dong, L., Huang, S., Muzio, A., Singhal, S., Hassan, H., Song, X., Wei, F.: Multilingual machine translation systems from microsoft for WMT21 shared task. In: Proceedings of the Sixth Conference on Machine Translation, WMT@EMNLP 2021, Online Event, November 10-11, 2021 (2021)

    Google Scholar 

  38. Yang, J., Ma, S., Zhang, D., Wu, S., Li, Z., Zhou, M.: Alternating language modeling for cross-lingual pre-training. In: Proc. of AAAI (2020)

    Google Scholar 

  39. Yang, J., Yin, Y., Ma, S., Huang, H., Zhang, D., Li, Z., Wei, F.: Multilingual agreement for multilingual neural machine translation. In: Proc. of ACL (2021)

    Google Scholar 

  40. Yang, J., Yin, Y., Ma, S., Zhang, D., Wu, S., Guo, H., Li, Z., Wei, F.: UM4: unified multilingual multiple teacher-student model for zero-resource neural machine translation. In: Proc. of IJCAI (2022)

    Google Scholar 

  41. Zhang, C., Xu, R., He, X.: Novel class discovery for long-tailed recognition. CoRR (2023)

    Google Scholar 

  42. Zhang, H., Xu, H., Lin, T.E., Lyu, R.: Discovering new intents with deep aligned clustering. In: Proc. of AAAI (2021)

    Google Scholar 

  43. Zhang, H., Xu, H., Wang, X., Long, F., Gao, K.: USNID: A framework for unsupervised and semi-supervised new intent discovery. CoRR (2023)

    Google Scholar 

  44. Zhang, S., Bai, J., Li, T., Yan, Z., Li, Z.: Modeling intra-class and inter-class constraints for out-of-domain detection. In: Proc. of DASFAA (2023)

    Google Scholar 

  45. Zhang, S., Li, T., Bai, J., Li, Z.: Label-guided contrastive learning for out-of-domain detection. In: Proc. of ICASSP (2023)

    Google Scholar 

  46. Zhang, S., Yang, J., Bai, J., Yan, C., Li, T., Yan, Z., Li, Z.: New intent discovery with attracting and dispersing prototype. arXiv preprint arXiv:2403.16913 (2024)

  47. Zhang, Y., Zhang, H., Zhan, L.M., Wu, X.M., Lam, A.: New intent discovery with pre-training and contrastive learning. In: Proc. of ACL (2022)

    Google Scholar 

  48. Zhou, Y., Quan, G., Qiu, X.: A probabilistic framework for discovering new intents. In: Proc. of ACL (2023)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. U1636211, U2333205, 61672081, 62302025, 62276017), a fund project: State Grid Co., Ltd. Technology R&D Project (ProjectName: Research on Key Technologies of Data Scenario-based Security Governance and Emergency Blocking in Power Monitoring System, Proiect No.: 5108-202303439A-3-2-ZN), the 2022 CCF-NSFOCUS Kun-Peng Scientific Research Fund and the Opening Project of Shanghai Trusted Industrial Control Platform and the State Key Laboratory of Complex & Critical Software

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, S. et al. (2024). RoNID: New Intent Discovery with Generated-Reliable Labels and Cluster-friendly Representations. In: Onizuka, M., et al. Database Systems for Advanced Applications. DASFAA 2024. Lecture Notes in Computer Science, vol 14854. Springer, Singapore. https://doi.org/10.1007/978-981-97-5569-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5569-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5568-4

  • Online ISBN: 978-981-97-5569-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics