Abstract
New Intent Discovery (NID) strives to identify known and reasonably deduce novel intent groups in the open-world scenario. But current methods face issues with inaccurate pseudo-labels and poor representation learning, creating a negative feedback loop that degrades overall model performance, including accuracy and the adjusted rand index. To address the aforementioned challenges, we propose a Robust New Intent Discovery (RoNID) framework optimized by an EM-style method, which focuses on constructing reliable pseudo-labels and obtaining cluster-friendly discriminative representations. RoNID comprises two main modules: reliable pseudo-label generation module and cluster-friendly representation learning module. Specifically, the pseudo-label generation module assigns reliable synthetic labels by solving an optimal transport problem in the E-step, which effectively provides high-quality supervised signals for the input of the cluster-friendly representation learning module. To learn cluster-friendly representation with strong intra-cluster compactness and large inter-cluster separation, the representation learning module combines intra-cluster and inter-cluster contrastive learning in the M-step to feed more discriminative features into the generation module. RoNID can be performed iteratively to ultimately yield a robust model with reliable pseudo-labels and cluster-friendly representations. Experimental results on multiple benchmarks demonstrate our method brings substantial improvements over previous state-of-the-art methods by a large margin of +1\(\sim \)+4 points.
S. Zhang and C. Yan—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We estimate the number of K based on prior works [42] to ensure a fair comparison.
- 2.
- 3.
References
An, W., Tian, F., Zheng, Q., Ding, W., Wang, Q., Chen, P.: Generalized category discovery with decoupled prototypical network. In: Proceedings of AAAI (2023)
Asano, Y.M., Rupprecht, C., Vedaldi, A.: Self-labelling via simultaneous clustering and representation learning. In: Proceedings of ICLR (2020)
Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of ECCV (2018)
Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: Proceedings of NeurIPS (2020)
Casanueva, I., Temčinas, T., Gerz, D., Henderson, M., Vulić, I.: Efficient intent detection with dual sentence encoders. In: Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI (2020)
Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)
Chen, Q., Zhuo, Z., Wang, W.: Bert for joint intent classification and slot filling. arXiv preprint arXiv:1902.10909 (2019)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: Proceedings of ICML (2020)
Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Proceedings of NeurIPS (2013)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of AACL (2019)
Gowda, K.C., Krishna, G.: Agglomerative clustering using the concept of mutual nearest neighbourhood. Pattern recognition (1978)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: Proceedings of NeurIPS (2017)
Hsu, Y.C., Lv, Z., Kira, Z.: Learning to cluster in order to transfer across domains and tasks. arXiv preprint arXiv:1711.10125 (2017)
Khosla, P., et al.: Supervised contrastive learning. In: Proceedings of NeurIPS (2020)
Kumar, R., Patidar, M., Varshney, V., Vig, L., Shroff, G.: Intent detection and discovery from user logs via deep semi-supervised contrastive clustering. In: Proceedings of NAACL (2022)
Larson, S., et al.: An evaluation dataset for intent classification and out-of-scope prediction. arXiv preprint arXiv:1909.02027 (2019)
Li, J., Zhou, P., Xiong, C., Hoi, S.C.H.: Prototypical contrastive learning of unsupervised representations. In: Proceedings of ICLR (2021)
Lin, T.E., Xu, H., Zhang, H.: Discovering new intents via constrained deep adaptive clustering with cluster refinement. In: Proceedings of AAAI (2020)
Liu, B., Mazumder, S.: Lifelong and continual learning dialogue systems: learning during conversation. In: Proceedings of AAAI (2021)
MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability (1967)
Min, Q., Qin, L., Teng, Z., Liu, X., Zhang, Y.: Dialogue state induction using neural latent variable models. arXiv preprint arXiv:2008.05666 (2020)
Mo, Y., et al.: MCL-NER: cross-lingual named entity recognition via multi-view contrastive learning. In: Proceedings of AAAI (2024)
Padmasundari, S.B.: Intent discovery through unsupervised semantic text clustering. Proc. Interspeech 2018 (2018)
Peyré, G., Cuturi, M., et al.: Computational optimal transport: With applications to data science. Foundations and Trends® in Machine Learning (2019)
Shi, W., An, W., Tian, F., Zheng, Q., Wang, Q., Chen, P.: A diffusion weighted graph framework for new intent discovery. arXiv preprint arXiv:2310.15836 (2023)
Taherkhani, F., Dabouei, A., Soleymani, S., Dawson, J.M., Nasrabadi, N.M.: Transporting labels via hierarchical optimal transport for semi-supervised learning. In: Proc. of ECCV (2020)
Tai, K.S., Bailis, P., Valiant, G.: Sinkhorn label allocation: Semi-supervised classification via annealed self-training. In: Proc. of ICML (2021)
Vaze, S., Han, K., Vedaldi, A., Zisserman, A.: Generalized category discovery. In: Proc. of CVPR (2022)
Wang, Z., Chai, L., Yang, J., Bai, J., Yin, Y., Liu, J., Guo, H., Li, T., Yang, L., Li, Z., et al.: Mt4crossoie: Multi-stage tuning for cross-lingual open information extraction. arXiv preprint arXiv:2308.06552 (2023)
Wu, C.S., Madotto, A., Hosseini-Asl, E., Xiong, C., Socher, R., Fung, P.: Transferable multi-domain state generator for task-oriented dialogue systems. In: Proc. of ACL (2019)
Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: Proc. of ICML (2016)
Xu, J., Wang, P., Tian, G., Xu, B., Zhao, J., Wang, F., Hao, H.: Short text clustering via convolutional neural networks. In: Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing (2015)
Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: Simultaneous deep learning and clustering. In: Proc. of ICML (2017)
Yang, J., Guo, H., Yin, Y., Bai, J., Wang, B., Liu, J., Liang, X., Cahi, L., Yang, L., Li, Z.: m3p: Towards multimodal multilingual translation with multimodal prompt. arXiv preprint arXiv:2403.17556 (2024)
Yang, J., Huang, S., Ma, S., Yin, Y., Dong, L., Zhang, D., Guo, H., Li, Z., Wei, F.: CROP: zero-shot cross-lingual named entity recognition with multilingual labeled sequence translation. In: Proc. of EMNLP Findings (2022)
Yang, J., Ma, S., Dong, L., Huang, S., Huang, H., Yin, Y., Zhang, D., Yang, L., Wei, F., Li, Z.: Ganlm: Encoder-decoder pre-training with an auxiliary discriminator. In: Proc. of ACL (2023)
Yang, J., Ma, S., Huang, H., Zhang, D., Dong, L., Huang, S., Muzio, A., Singhal, S., Hassan, H., Song, X., Wei, F.: Multilingual machine translation systems from microsoft for WMT21 shared task. In: Proceedings of the Sixth Conference on Machine Translation, WMT@EMNLP 2021, Online Event, November 10-11, 2021 (2021)
Yang, J., Ma, S., Zhang, D., Wu, S., Li, Z., Zhou, M.: Alternating language modeling for cross-lingual pre-training. In: Proc. of AAAI (2020)
Yang, J., Yin, Y., Ma, S., Huang, H., Zhang, D., Li, Z., Wei, F.: Multilingual agreement for multilingual neural machine translation. In: Proc. of ACL (2021)
Yang, J., Yin, Y., Ma, S., Zhang, D., Wu, S., Guo, H., Li, Z., Wei, F.: UM4: unified multilingual multiple teacher-student model for zero-resource neural machine translation. In: Proc. of IJCAI (2022)
Zhang, C., Xu, R., He, X.: Novel class discovery for long-tailed recognition. CoRR (2023)
Zhang, H., Xu, H., Lin, T.E., Lyu, R.: Discovering new intents with deep aligned clustering. In: Proc. of AAAI (2021)
Zhang, H., Xu, H., Wang, X., Long, F., Gao, K.: USNID: A framework for unsupervised and semi-supervised new intent discovery. CoRR (2023)
Zhang, S., Bai, J., Li, T., Yan, Z., Li, Z.: Modeling intra-class and inter-class constraints for out-of-domain detection. In: Proc. of DASFAA (2023)
Zhang, S., Li, T., Bai, J., Li, Z.: Label-guided contrastive learning for out-of-domain detection. In: Proc. of ICASSP (2023)
Zhang, S., Yang, J., Bai, J., Yan, C., Li, T., Yan, Z., Li, Z.: New intent discovery with attracting and dispersing prototype. arXiv preprint arXiv:2403.16913 (2024)
Zhang, Y., Zhang, H., Zhan, L.M., Wu, X.M., Lam, A.: New intent discovery with pre-training and contrastive learning. In: Proc. of ACL (2022)
Zhou, Y., Quan, G., Qiu, X.: A probabilistic framework for discovering new intents. In: Proc. of ACL (2023)
Acknowledgement
This work was supported in part by the National Natural Science Foundation of China (Grant Nos. U1636211, U2333205, 61672081, 62302025, 62276017), a fund project: State Grid Co., Ltd. Technology R&D Project (ProjectName: Research on Key Technologies of Data Scenario-based Security Governance and Emergency Blocking in Power Monitoring System, Proiect No.: 5108-202303439A-3-2-ZN), the 2022 CCF-NSFOCUS Kun-Peng Scientific Research Fund and the Opening Project of Shanghai Trusted Industrial Control Platform and the State Key Laboratory of Complex & Critical Software
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, S. et al. (2024). RoNID: New Intent Discovery with Generated-Reliable Labels and Cluster-friendly Representations. In: Onizuka, M., et al. Database Systems for Advanced Applications. DASFAA 2024. Lecture Notes in Computer Science, vol 14854. Springer, Singapore. https://doi.org/10.1007/978-981-97-5569-1_7
Download citation
DOI: https://doi.org/10.1007/978-981-97-5569-1_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-5568-4
Online ISBN: 978-981-97-5569-1
eBook Packages: Computer ScienceComputer Science (R0)